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ABSTRACT 

This report documents efforts under ONR grant no. N00014-94-1-0676. This is an AASERT 
award attached to parent grant NRL no. N00014-93-1-G022. The purpose of the grant is to 
support research on how group dynamics can emerge from collections of agents that would 
enable them to make decisions that individuals could not or accomplish tasks that individuals 
could not. 

Funding from the grant supported four graduate students directly; i.e., with stipends and 
tuition, and a number of undergraduate students indirectly, through materials and supplies 
purchases to support their independent study efforts in distributed intelligence and cooperative 
robotics. 

Results of these studies indicate that among distributed/cooperative learning methods, the most 
promising and appropriate for distributed mobile agent applications is a combination of 
learning and behavioral methods. In particular, the recommended method combines the data 
structures and execution cycle of the learning classifier system with reinforcement computed 
similarly to Q-learning and with some stochastic selection and genetics-based rule-paring 
methods. These systems, in conjunction with message-based communications between agents, 
is shown to be widely applicable and convergent in ideal scenarios. The methods have the 
disadvantages of being slow, and they do not perform well in sequential learning tasks without 
significant modifications. 
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Overview 

The purpose of the parent grant for this AASERT award was to examine methods for the 
coordination of intelligent agents by modeling them individually as dynamic subsystems. The 
problem spaces as a whole then represented a larger space into which the agents were 
embedded. The agents would couple to each other in ways that would result in the effective 
emergence of a single collective group dynamic which is, in a mathematically analytical 
manner, a composite system integrally dependent on each subsystem (agent). The agents' own 
perception of the coupling signals would therefore represent knowledge of the state of the 
population as a whole. The problem addressed by this research was the mechanism by which 
such coupling signals could be implemented, the information content of such signals, and the 
behaviors and decisions that could thereby be effected. 

The original approach to this problem, as supported under the parent grant, was to encode 
signals and behavioral cues into the wave characteristics of coupled nonlinear oscillations. 
This model was inspired by biological systems, such as those that control circadian rhythms, 
locomotory systems, and learned responses to sensory stimuli. Because this parent grant was 
terminated prematurely in the first year, this original approach was broadened under the 
AASERT award to befit more general application domains, while still limiting the studies to 
distributed AI and decision theories for multiple agents. 

Student Projects Supported 

This AASERT award funded tuition and stipends for four graduate students, who together 
completed three M.S. degrees and is soon to result in one Ph.D., all in electrical engineering. 
In addition, the material and supply budget provided by the grant was used to purchase 
electronic components and software used by undergraduate independent study students in a 
supporting role. These students assisted the graduate students in hardware experiments, 
software simulation, and proof of concept projects. Such projects included the construction of 
radio-frequency coupling transceivers, small robotic platforms, and software modules for the 
implementation of the devised learning and coordination techniques. 

Subsequent sections contain the thesis abstracts of each student. Following these are copies of 
conference and journal publications authored or co-authored by these students. 

"Architecture Design and Simulation for Distributed Learning Classifier Systems," M.S. 
thesis by Douglas G. Gaff, 1995. 

Abstract: In this thesis, we introduce the Distributed Learning Classifier system (DLCS) as a 
novel extension of J. H. Holland's standard learning classifier system. While the standard LCS 
offers effective real-time control and learning, one of its limitations is that it does not provide a 
mechanism for allowing communication between LCS agents in a multiple-agent scenario. 
Often multiple-agents are used to solve large tasks collectively by subdividing the task into 
smaller parts. Multiple agents can also be used to solve a task in parallel so that a solution can 
be arrived at more rapidly. With the DLCS, we introduce mechanisms that satisfy both of 
these cases, while still providing compatible operation with the LCS. 



We introduce three types of messages that can be passed between DLCS agents. The first, the 
classifier message, allows agents to share learned information with one another, thereby 
helping agents benefit from each other's successes. The second, the action message, allows 
agents to "talk" to one another. The third, the bucket brigade algorithm payoff message, 
extends the chain rewarding payoff scheme of the standard LCS to multiple DLCS agents. 

Finally, we present some simulation results for both the standard LCS and the DLCS. Our 
LCS simulations examine some of the important aspects of learning classifier system operation, 
as well as illustrate some of the shortcomings. The DLCS simulations justify the distributed 
architecture and suggest future directions for achieving learning among multiple agents. 

[Comments: Mr. Gaffs research is the first known distributed system adaptation of the LCS. 
The resulting paper (see Appendix) was well-received. The results, though, served to illustrate 
limitations in the learning performance of the LCS that was to be addressed in the next M S. 
thesis project to be supported. Mr. Gaff is currently a senior software engineering for Spatial 
Positioning Systems, Inc., of Reston, VA.] 

"A Distributed Q-learning Classifier System for Tack Decomposition in Real Robot Learning 
Problems, " M.S. thesis by Kevin L. Chapman, 1996. 

Abstract: A distributed reinforcement-learning system is designed and implemented on a 
mobile robot for the study of complex task decomposition in real robot learning environments. 
The distributed Q-learning Classifier System (DQLCS) is evolved from the standard Learning 
Classifier System (LCS) proposed by J. H. Holland. Two of the limitations of the standard 
LCS are its monolithic nature and its complex apportionment of credit scheme, the bucket 
brigade algorithm (BBA). The DQLCS addresses both of these problems as well as the 
inherent difficulties faced by learning systems operating in real environments. 

We introduce Q-learning as the apportionment of credit component of the DQLCS, and we 
develop a distributed learning architecture to facilitate complex task decomposition. Based 
upon dynamic programming, the Q-learning update equation is derived and its advantages over 
the complex BBA are discussed. The distributed architecture is implemented to provide for 
faster learning by allowing the system to effectively decrease the size of the problem space it 
must explore. 

Holistic and monolithic shaping approaches are used to distribute reward among the learning 
modules of the DQLCS in a variety of real robot learning environments. The results of these 
experiments support the DQLCS as a useful reinforcement learning paradigm and suggest 
future areas of study in distributed learning systems. 

[Comments: Though not fully reflected in the abstract, the primary contributions of Mr. 
Chapman's thesis are in the decomposition of sequential learning tasks and their 
implementation on robotic hardware. It is in robot learning and sensor fusion that a novel 
application soon presented itself, although the solutions methods were to eventually differ (see 
below). Mr. Chapman is now a software engineer for the Intelligent Decision Support Systems 
Group at Raytheon E-Systems Corporation in Falls Church Virginia.] 



"A Fuzzy Logic Solution for Navigation of the Subsurface Explorer Planetary Exploration 
Robot, "M.S. thesis by Veronica A. Gauss, 1997. 

Abstract: An unsupervised fuzzy logic navigation algorithm is designed and implemented in 
simulation for the Subsurface Explorer planetary exploration robot. The robot is intended for 
the subterranean exploration of Mars, and will be equipped with acoustic sensing for detecting 
obstacles. Measurements of obstacle distance and direction are anticipated to be imprecise 
however, since the performance of acoustic sensors is degraded in underground environments. 
Fuzzy logic is a satisfactory means of addressing imprecision in plant characteristics, and has 
been implemented in a variety of autonomous vehicle navigation applications. However, most 
fuzzy logic algorithms that perform well in unknown environments have large rule-bases or use 
complex methods for tuning fuzzy membership functions and rules. These qualities make them 
too computationally intensive to be used for planetary exploration robots like SSX. 

In this thesis, we introduce an unsupervised fuzzy logic algorithm that can determine a 
trajectory for the SSX through unknown environments. This algorithm uses a combination of 
simple fusion of robot behaviors and self-tuning membership functions to determine robot 
navigation without resorting to the degree of complexity of previous fuzzy logic algorithms. 

Finally, we present some simulation results that demonstrate the practicality of our algorithm in 
navigating indifferent environments. The simulations justify the use of our fuzzy logic 
technique, and suggest future areas of research for fuzzy logic navigation algorithms. 

[Comments: Ms. Gauss had previously worked for the NASA Jet Propulsion Laboratory in 
the Mars Pathfinder program. The subsurface explorer seemed a suitable platform for 
application of distributed learning methods, and also provided the possibility to leverage any 
successful results into future research. However, she was given complete freedom to explore 
and determine the most feasible and appropriate control method for the SSX, and based on 
significant comparative studies, chose the fuzzy controller described. Fuzzy controllers, 
though, show little promise for distributed applications. Ms. Gauss is now a software engineer 
at Computer Motion, Inc., of Goleta, CA. Computer Motion makes robots for surgical 
applications] 

"Q-learning in a Production Rule System for Applications to Control Systems, " tentative title 
for Ph.D. thesis by Paul J. Johnson, 1997. 

Tentative Abstract: The Learning Classifier System (LCS), originally proposed by John 
Holland in 1986, combines credit assignment {i.e. reinforcement learning) and rule discovery 
into an adaptive, message-passing, production rule system (PRS) capable of learning how to 
both plan and react in response to sensory inputs. While the LCS shows great promise in 
principle, it has not been very successful in control system applications, most likely due to its 
method of credit assignment: the Bucket Brigade Algorithm. 

To improve the performance of Holland's original LCS in control system applications, this 
thesis proposes the use of Q-learning as a replacement for the credit assignment component of 
the LCS. The resulting system, termed the Q-learning Production Rule System (QPRS), 
maintains a rule discovery mechanism to complement the reinforcement learning capabilities 
associated with Q-learning. The QPRS requires minor modifications to the LCS rule discovery 



mechanism to account for the new reinforcement learning component. Likewise, the Q- 
learning algorithm has been modified slightly from its original form to function within the 
overall structure of the QPRS. 

Q-learning is used within the QPRS as a reinforcement learning mechanism, but it is equally 
valid to consider Q-learning to be a form of recursive dynamic programming. In this sense, Q- 
learning can be susceptible to the same problems that plague dynamic programming. One such 
problem is the curse of dimensionality. As the name suggests, as the number of discrete state- 
action pairs increases, full enumeration of all state-action possibilities can require prohibitive 
computing resources. However, when Q-learning is combined with rule discovery in the 
QPRS, this curse of dimensionality can be attenuated. By providing the QPRS with the 
capabilities to discover previously untested state-action pairs, it is not necessary to fully 
enumerate the entire state-action space throughout all time. 

When the states and/or actions are continuous variables, as is usually the case in control system 
problems, some form of quantization must first take place. The concept of full state 
enumeration has a slightly different meaning when the state-action pairs are quantized versions 
of continuous variables. It is up to the designer to choose the level of quantization. This 
level of quantization will directly affect the problems associated with the curse of 
dimensionality. There is a tradeoff between increasing the resolution (finer quantization) and 
making the problem more computationally intensive. This tradeoff leads directly to one of the 
biggest changes we have introduced to the QPRS. We have modified the Q-learning algorithm 
within the QPRS to incorporate interpolation in the Q-value update equations. We make use 
of our dynamic programming analogy to create a better PRS by extending its interpolation 
algorithm to learning systems. Interpolation allows for a finer degree of response from a given 
level of quantization. This eliminates the need to more finely quantize a given variable. 

The ties between DP and control systems suggest meaningful cost functions and specific ways 
to change cost functions to elicit desired responses. This is not the case with the BBA, nor 
with other "ad hoc" cost functions. There is a long history behind DP, and we wish to use this 
experience to develop cost functions to use with Q-learning in our QPRS. The use of a 
modified form of Q-learning has provided the QPRS with the capabilities needed for successful 
application to control system problems. With the development of the QPRS, a new tool now 
exists for adaptive optimal control in the absence of plant/model information. 

[Comments: This study focused on the predictive study of the underlying dynamics of 
classifier-like systems and systems with Q-learning-like reinforcement methods. It provides a 
more analytical framework for the study of learning system convergence. Paul Johnson has 
finished his research on this topic and has only to complete and defend his dissertation. He is 
now a research engineer for Raytheon Corporation in Massachusetts.] 

Appendix 

Attached are copies of papers authored or co-authored by students supported directly and 
indirectly by project funds, and papers for which the undergraduate students provided 
laboratory assistance. Additional papers will appear in the future. 
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A.Reactive Coordination Scheme 
for a Many-Robot System 

Kimberlv Snarman Evans. Cem Unsal, Member, [EILE, and John S. Bav. Senior \Umbtr. IEEE 

Abstract—This paper presents a novel approach for coordi- 
nating a homogeneous system of mobile robots using implicit 
communication in the form of broadcasts. The broadcast-based 
coordination scheme was developed for the Army Ant swarm—a 
system of small, relatively inexpensive mobile robots that can 
accomplish complex tasks by cooperating as a team. The primary 
drawback, however, of the Army Ant system is that the absence 
of a central supervisor poses difficulty in the coordination and 
control of the agents. Our coordination scheme provides a global 
"group dynamic" that controls the actions of each robot using 
only local interactions. Coordination of the swarm is achieved 
with signals we call '"heartbeats." Each agent broadcasts a unique 
heartbeat and responds to the-collective behavior of all other 
heartbeats. We generate heartbeats -with van der Pol oscillators. 
In this application, we use the known properties of coupled van 
der Pol oscillators to create predictable group behavior. Some of 
the properties and behaviors of coupled van der Pol oscillators 
are discussed in detail. We emphasize the use of this scheme to 
allow agents to simultaneously perform an action such as lifting, 
steering, or changing speed. The results of experiments performed 
on three actual heartbeac circuits are presented and the behavior 
of the realized system is compared to simulated results. We also 
demonstrate the application of the coordination scheme to global 
speed control. 

I.   INTRODUCTION 

T\ /TOBILE robots are increasingly being considered for 
-LTJLindustrial, military, and scientific applications. Much 
o: the robotics research to date has focused on improving 
".he sophistication of individual robot; to accomplish more de- 
manding and complex tasks. We propose that many tasks, such 
as large material handling problems, are best achieved using 
large numbers of relatively unintelligent robots. Typically, a 
aistnbutsd approach is more desirable in such a scenario since 
:ne communications overhead necessary for central control is 
prohibitive for large systems of mobile robots, or swarms. 
We further suggest chat homogeneous swarms, which are 
composed of similar robots, have many advantages over 
heterogeneous systems. The goal of the Army Ant Project [2], 

Manuscript received January 2. 1995: revised February 14. 1996 and 
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[18], [19] is to develop a homogeneous system of autonomous 
mobile robots with the following characteristics: 

• The Army Ant system is modular, so that agents are 
interchangeable. Since any agent can assume the role of 
any failed teammate, the system is immune to the single 
point failures that plague heterogeneous systems where 
a failure in the chain of command can result in system 
failure. The failure of one. or even several, army ants will 
not adversely affect the performance of the swarm. The 
innate robusmess of the Army Ant swarm is perhaps the 
most critical result of homogeneity. 

• Tne Army Ant swarm is more dynamic than a het- 
erogeneous system in chat it may divide into smaller 
groups when fewer agents are required for a task. There 
is never a risk of incomplete hierarchies. Furthermore. 
homogeneous systems, because they typically do not 
use centralized control methods, can accommodate large 
numbers of agents. 

• .Army ants are physically small and relatively unsophis- 
ticated. The simplicity of the ants, combined with the 
features discussed above, will allow them to be mass 
produced fairly inexpensively. Tne intention is to create 
a system that can tolerate the loss of a few robots, both 
in terms of cost and system performance. A possible 
drawback of homogeneity is the possibility of agents 
being overquaiined for a job. but the robustness o: the 
system more than compensates for this cost. 

.Army ant agents are completely autonomous and have no 
a priori information abouc their environment. Their behavior 
is reactive in that individual agents respond to stimuli in 
the form of sensory inputs. This type of behavior, known 
as sensor driven behavior, offers greater flexibility to cope 
with changing environments. Unlike centralized, planner based 
approaches, wherein robots expend resources gathering and 
processing information, a reactive approach allows robots to 
respond quickly to changes in the environment. 

Sensor driven behavior is consistent with a distributed 
control approach. An agent's control algorithm determines an 
action based on the local information that dows from sensory 
inputs. Group behavior is achieved through the simple actions 
of many unintelligent agents. For example, an agent is attracted 
to a payload destination by receiving an infrared signal from 
a beacon that is placed ac the proper location. Each agent 
responds independently to the beacon, but the actions of each 
individual result in the group of agents gathering at the beacon. 

The flexible nature the .Army Ant swarm lends itself to 
many different applications. Army ants are well suited for 
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•.azardous operations such as mine sweeping, nuclear power 
;iant maintenance work and military applications, where the 
in'.ironment is unsafe for humans, and the risk tactor is too 
nigh to utilize expensive, highly specialized robots. 

The Army Ant approach is not intended to be the answer 
:o all autonomous robot applications. However, the tact that 
not all robotic tasks require highly intelligent agents and that 
l croup of seif-or°anizinq agents can exhibit a higher-level 
behavior/intelligence emerging as a result of agent interactions, 
makes this aoproach attractive. It is obvious that Army Ant 
robots are no: appropriate for tasks requiring specialized 
division of .labor such as assembling a complex machine. 
Our approach is appropriate to teams of unskilled laborers 
with little differentiation of responsibilities. It is not a valid 
oroposition where there is no economy of scale, where a few 
inteilisent agents are far better than a swarm of "unintelligent" 

asents. 

A. Cooperative Behavior 

The ability of the Army Anc swarm to accomplish complex 
2oals relies upon implicit cooperation between individual 
agents. It is essential to distinguish between explicit and <m- 
piicit cooperation when describing the behavior of a system of 
mobile robots. Mataric [16] defines explicit cooperation as "a 
set of interactions between agents which involve exchanging 
information or performing actions in order to help other agents 
achieve their goals." In contrast, implicit cooperation consists 
o< "actions that are a part of the agent's own goal-achieving 
behavior, although they may have effects in the world that 
helo other agents achieve their goals." 

We reccsnize implicit cooperation as the type of interaction 
found quite frequently in natural systems. Insects are not 
altruistic, yet colonies of insects collectively accomplish goals 
such as transporting food and building structures [S], [9], [12]. 
Various studies of insects have shown that colonies operate in 
a distributed fashion, where individual insects follow a rew 
simple rules. Likewise, simple interactions between relatively 
unintelligent army ants will produce rather complex system 
behavior" 3eni and Wang [4] refer to this phenomenon as 
swarm intelligence. 

Although both explicit and implicit communications may 
complement each other, as suggested by several researchers 
[1], [12], use of explicit communications has its problems in 
a swarm of the size envisioned by our approach. Bandwidth 
issues is one. as well as the need to "address" the agents, 
which will cause the swarm to lose its homogeneity. Explicit 
communications also adds to cost and complexity. These are 
two important issues we want to avoid in our scenario. It 
has been shown that "decentralized control without explicit 
communication can be used in performing cooperative tasks 
requiring a collective behavior" [12]. 

There are many instances when agents must not just coop- 
erate, but do so in a coordinated manner. While to cooperate 
means to work toward a common goal, to coordinate means 
to cerform a common action or movement in a harmonized 
manner. In the material transport example, agents may have to 
lift a pallet simultaneously so that the payload stays level; also. 

y2=gix.yO 

agent 2 

Fia. 1.    Grouo dynamics in the Army Anc scenario. 

transporting the payload is a much easier task when agents 
steer together. Various agent actions may, at some time or 
another, have to be performed synchronously. In this paper 
we present a broadcast-based coordination scheme that allows 
us to achieve multi-agent coordination without programming 
the behavior. 

B. Swarm Coordination 

Homogeneous systems of agents, by nature, lack a control 
structure for coordination. There exists no hierarchy of com- 
mand by which lower ranked agents follow the actions of their 
superiors. For a many agent system, explicit message passing 
is likely to create a communication bottleneck. Only indirect 
communication, in the form of broadcasts or cues, offers a 
oractical solution to the swarm coordination problem. 

We define a cue as a prompt that a robot perceives trom 
its environment. A broadcast consists of information that is 
transmitted indiscriminately, so that all robots receive the 
same information.1 Using broadcast signals we show that we 
can create a "group dynamic" that ail agents can sense and 
influence, but which does not reside in any individual. 

As illustrated in Fig. 1. agents interact with their envi- 
ronment through sensors, actuators and broadcast signals. 
However, they are not permitted to address each other: ad- 
ditionally, the actions ot an agent have no direct effect on 
other agents (or have explicit "interpretation"). 

The group dynamic is influenced and generated by the ac- 
tions ofall the robots, but is dominated by none in particular. It 
is sustained by the contribution of the population. It influences 
the behavior and decision of the robots, but allows the robots to 
function with local sensing, short broadcast communications, 
and no need for global information or maps. It has no power 
of direct actuation, but guides robots' behavior, like a group 
conscience. 

The global dynamics of the system proposed will obviously 
have nonlinear characteristics. The system must be adaptive 
and sensitive to changes in individual '"states" of the agents. 
To achieve such a system, we propose the use of signals we call 
"heartbeats," of which each agent has at least one. and which 
can respond to the collective behavior (or global dynamics of 
the environment/system) of all other robots' heartbeats. 

i For example, a locator beacon signal is a cue. while a robots signal ror 
help is a broadcast. 
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Different scenarios where explicit communications are com- 
bined wich ehe "heartbeats" approach can also be considered 
:o obtain-more precise swarm ccordinacicn ac :he expense of 
cost and complexity. Agents may be given identities separate 
from their heartbeats so that it would be possible to ask one to 

N cum its heanbeac off to elect icseif a leader (see Section II-A). 
Or a group of agents cculd solicit another agent to join in by 
asking ic to turn its heartbeat on. 

Each agent broadcasts a unique primary heartbeat and 
responds to the collective behavior of all other heartbeats; 
they do not use the heartbeats to identify or address one 
another. We generate the ever-present, hardwired heartbeats 
wich nonlinear oscillator circuits cailed van der Pol oscillators. 
The oscillators form a coupled network when each agenc adds 
components of others' heartbeats to its own. Over a large 
range of frequencies and coupling factors, coupled van der Pol 
oscillators will synchronize their oucputs [10]. This property 
is known as frequency entrainment.1 

Bay and Hemami [3] showed that coupled van der Pol 
oscillators-1 could be used to model 'the cencral pattern gen- 
erators (CPG) that stimulate, limb commands used in human 
walking and jumping. Cohen [6] used coupled oscillators to 
model the swimming motion o( the sea lamprey. His research 
poincs to the plausibility that the swimming speed of a fish 
is controlled by an initial alteration of the frequency of an 
individual oscillacor pair that results in all other oscillators 
entraining to the new frequency. We use van der Pol oscillators 
to mimic this type of behavior in our system of mobile robots. 
Other researchers have realized that CPG's, which control 
without central intelligence, hold tremendous potential for 
robocics applications. Crisman and Avers [7] have formed a 
partnership to design a mobile robot suitable for operation in 
shallow water. The eight-legged walking machine is pactemed 
after the American lobster, which is capable of walking in 
any direction, including laterally. Their CPG based controller 
coordinates and controls the robot's motion. 

We e.xploic the frequency entrainment property to develop a 
global group dynamic that adaptively controls and coordinates 
a swarm of agents. Because synchronization is an inherent 
property of the coupied oscillacors. we need not program the 
behavior. Synchronization occurs whenever agents "listen" to 
the heartbeats. While a more traditional approach such as 
broadcasting digital information over an ethemet is an option, 
ic is a far more sophisticated solution than the coordination 
problem demands. Our coupled oscillator approach to the 
coordination of a swarm of agents is a more "natural" and 
simplistic solution. 

This '"reactive broadcast"-type of communication enables 
the swarm to 

• sense when agents are added or dropped from the group: 
• naturally choose a group leaden 

- Frequency entrainment is a phenomenon that occurs when a periodic t'orce 
is applied :o a system whose osculation is free and seif excited, and the 
seif-excitea osculation fails into synchronization with the driving frequency 
.'31 

■' Van Jer Pol oscillators are wideiy used for entrainment and biological 
—oceiing in past literature. This fact and characteristics such as robustness 
--.a simplicity motivated us to use VDP for our application. 
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Fig. 2.    Single van der Pol  oscillator.  (Coupling  factors  for a  multiple 
oscillator scheme are aiso shown.) 

react to a single agent, i.e.. any individual can effect 
change in the group behavior. 

C. Hardware Goals 

We show that our broadcast-based coordination scheme can 
be used for multi-agent coordination in two ways. First, we 
demonstrate the synchronization of three agent heartbeats. 
We do this by realizing three van der Pol oscillators whose 
signals we broadcast and receive using an FM communication 
link. Our aim is to build an inexpensive hardware system 
whose performance closely matches simulated results. Next 
we use the coupied, three oscillator network to develoo a 
globai speed controller. We integrate one heartbeat circuit 
into an army ant. while allowing the ocher two circuits to 
operate as standalone (only one army ant was available for 
this experiment). We show that when the heartbeats couple, 
the agents are commanded to travel at a common speed. By 
increasing the coupling coefficients, we are able to effect a 
global increase in speed. 

VDP oscillators will broadcast and receive heartbeats using 
an inexpensive FM communication system. Tne FM link 
introduces some distortion into the network of coupled oscilla- 
tors, altering its behavior somewhat. However, the deviations 
produced by coupling the system with FM do not adversely 
affect performance goals of our system. 

II. VAN DER POL OSCILLATORS 

The nonlinear oscillacors used in our distributed system are 
described by the well-known van der Pol equation which is 
used to describe an RJLC circuit with a nonlinear resistor, 
or equivalendy, a mass-spring-damper system with a position 
dependent damping coefficient [17] 

x -r- jj.(jr — x2)± -f- u2x — 0. 

The block diagram in Fig. 2 shows the construction of a single 
oscillator with p = -p = 1. It has two integrators, square- 
law and multiplier noniinearities, and a gain parameter w2 that 
corresponds, roughly, to the squared frequency of oscillation. 
Coupling is effected through the summins junction. 

Other signals x, are coupied to oscillator i's signal -. 
through a coupling coefficient A,-;-, which can be positive 
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.citory). or negative (inhibitory) (see also [5]). The absolute 
ue oi a coupiins factor. A. can range in value from 0 for 
coupling to 1.0 for full coupling. 

The primary broadcast heartbeat is invariant in order to 
5id confusion when task-specific roles are assumed. The 
emal signal(s) and any secondary broadcast signals may 
modified by coupling terms to affect the agenc's behavior. 

; may use as many different signal channels (each coupled 
different network topologies) as necessary to accomplish 

r tasks, but we seek to keep these to an absolute minimum 
minimize complexity and force the issue of emergent 

.iterative dynamics. 

Use of van der Pol Oscillators in a \huti-A°ent System 

3y adjusting the coupling coefficients between oscilla- 
s/asencs. it is possible to use van der Pol oscillators for 
ferent purposes such as leader selection and synchroniza- 
n. 
!) Leader Selection: To implement our technique for leader 
ecr.on. we suggest that the oscillator frequency given to 
;h agent would be chosen randomly at the factory- If" the 
cuencies vary continuously, then in all likelihood, each 
mc wiil have a unique frequency to differentiate itself. 
:ecially if the team size is relatively small (e.g.. <10 in 
xioulacion of 100 robots). Note that we still do not allow 
asent to address another, the heartbeat frequencies are used 

- discrimination rather than identification. 
2) Synchronization: Several phases (e.g.. pallet lifting, 
erins or changing speed) of the Army Ant scenario require 
it the agents act as a team. Therefore, they must somehow 
nchronize their actions. The agents implicitly formed a 
:rn when they coupled to the ocher's broadcast. As a team. 
:v form a fully-connected network. Tne coupled network 
oscillators can entrain so thac the internal heartbeats of 

:h asent oscillate at the same frequency as its teammates'. 
rardiess (almost) of the original frequency assigned to it. 
Tne positiveiy-coupled network is known to encrain to a 
mmon frequency for a broad range of individual frequencies 
0], [15]. Fig. 3 shows a simulation of four waves of different 
'.rinsic frequencies entraining with all coupling coefficients 
t to -0.3. Then, one of the agents stops "listening" to 
■.mmates. thus becomes the leader. The entrained frequency 
different (higher) than any of the original frequencies. Note 
o that entrapment requires the original frequencies to be 
isonably similar to one another.4 although higher harmonic 
crainment is possible [10]. 
Encrainmenc to a common frequency is used as the synchro- 
tation technique. When entrainmenc is detected, the common 
ive may be used as a clock so thac ensuing actions mighc 

performed simulcaneously thereafter. If we need to elect 
leader that the others should follow (for example, when 
reccional heading must be arbitrated), then thac leader can 
npiy »hange its own coupling coefficients to zero, so that 
oscillates it its original frequency, while the others remain 
trained. Tr.is results in a sec of waves thac are entrained to 

"'.'3 to ':0"e ceviacion from the radian frequency is permissible in order 
jotain entrainmenc 
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Fig. 3.    Heartbeat entrainment :o a common frequency: rail coupling, and 
then, leader following. Note the cnange in amplitude due to decoupling. 

the leader, as opposed to being mutually entrained; however, 
their phases may differ. 

III. COORDINATION SCHEME 

We demonstrate multi-agent coordination by realizing three 
heartbeat circuits and observing the entrainment behavior over 
a wide range of coupling factors. To achieve wireless coupling 
of the oscillators, we use an inexpensive FM communication 
link. While our results reflect some phase distortion in the 
received heartbeat signals, we show that the FM coupling does 
not adversely affect the performance goals of our system. 

A. Oscillator Realization 

The oscillator shown in Fig. 2 represents a heartbeat circuit, 
of which each agent has one. The input signals Xi_ through 
xn represent the heartbeats of all other agents whose signals 
are within "hearing" range. The received signals are coupled 
through a summing junction and added to the oscillator's 
feedback path. 

For our research we use a three oscillator model, in which 
each heartbeat couples to two other heartbeat signals (Fig. 4). 
The heartbeat circuits are identical excepc that each is assigned 
a unique value for the frequency parameter LJ

2
 . For simplicity, 

we choose ß as unity. When ß is large it is extremely difficult 
to predict the regions of entrainment for a coupled oscillator 
network. It has been shown theoretically that for small ß{<.l) 
we can oredicc the regions of frequency entrainmenc for 
a van der Pol oscillator excited by a driving frequency. 
Simply stated, if the frequencies are noc too different harmonic 
entrainmenc will occur. In the case of harmonic entrainment 
an oscillator synchronizes to the driving frequency. If the- 
frequency separation is large, buc the ratio of the frequencies 
is in the neighborhood of an integer or a fraction, frequency 
encrainmenc may still occur. The lacter type of entrainment 
is called higher-harmonic or subharmonic encrainmenc since 
the oscillator encrains to a frequency thac is a mulciple or 
submultiple of the driving frequency [10]. When ß is made 
large the mathematical analysis of the van der Pol equation 
becomes very complex, and we are unable co predict the 
reaions of encrainmenc. However, ic has been shown through 
analog simulations that cwo mucuaily coupled van der Pol 
oscillators exhibit stable limic cycle oscillacion for values of ß 
ransing from 0.1 co 1.0 [141. Furthermore, our own simulations 
have indicated thac frequency encrainmenc occurs for large 
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?\i. -.    ur Full and i"o) ring couplings or ihres osculacors. 

Oscillator 1 

Oscillator. Oscillator 

i'b) 

numbers of mucually coupled, van der Pol oscillators when 
p =  1.0. 

While the oscillator realization is almost a straightforward 
adaptation of the block diagram, a direct synthesis of the 
block diagram in Fig. 2 yields a-very low frequency oscillator 
with a limited frequency range. Thus, we time scaled all the 
oscillators by the same factor (xlOOO) and used ^2 to tune 
each oscillator to a unique frequency. 

B.  Wireless Coupling 

In choosing a communications medium to transmit agent 
heartbeats, several criteria were considered. The coordination 
scheme requires a communication system that is inexpensive, 
reliable, suitable for indoor or outdoor operation, and has rea- 
sonable range. There are several options for low cost wireless 
data links. For short range communication links, infrared and 
ultrasound are two popular media, but to synchronize a large 
swarm of agents spread out over a large area we need more 
range than these media offer. The primary disadvantage, how- 
ever, in using infrared or ultrasonic communication links is that 
their directional transmission beams cannot provide reliable 
couoiing. Object interference or an inability to maintain a line 
of si2ht are likely to prevent two agents from keeping their 
heartbeats locked. Thus, an omnidirectional communication 
link, such as an RF link, is most desirable for synchronizing 
a group of agents through mutual coupling. 

In keeping with the Army Ant specifications, a simple 
and low cost RF communications link is used to couple the 
oscillators. Oscillator signals are broadcast using miniature 
tunable FM transmitters. Portable digitally tuned FM radios 
are used as receivers. 

The range of our broadcast system is dependent upon the 
type of antenna used with the FM transmitters. The transmitters 
have a range of up to 1/3 mi with a 12-in wire antenna, 
but that range may be extended as much as 1 mi with 
a more sophisticated antenna. The system can be operated 
continuously for approximately two days on a 9 V battery. 

C. Computer Control of Oscillator Parameters 

To maintain autonomy in our .Army .Ant agents, we must 
give them the capability to control their own oscillator pa- 

rameters. Some aspects of swarm coordination require more 
than just synchronization at a fixed frequency. Tne speed 
controller to be discussed in Section IV relies on changes in 
coupling strength to effect global changes in the speed at 
which agents are commanded to travel. Thus, agents snail 
be capable of changing their coupling strength, as well as 
coupling or decoupling themselves from the heartbeat and 
varying their frequency parameters. We assume that each 
aaent can sense when to coupie or decouple its oscillators. 
One obvious situation in which an agent would voluntarily 
decouple itself from the network is when it detects that its 
"health" is failing. For example, an agent's battery voltage 
can easily be monitored, so when the battery discharges to 
the point that it can no longer support a critical load such 
as the drive motors, the agent realizes its futility and takes 
appropriate action. Under normal circumstances, agents are 
not permitted to change their pre-assigned frequencies. Yet in 
the case that an agent detects a failure mode it can decrease its 
frequency to avoid any possibility of being elected a leader. 

To provide automatic parameter control we use a voitage 
controlled amplifier interfaced to an up/down counter. Agents 
increase or decrease their parameters by either counter up or 
down. When an agent wants to decouple from the network it 
counts down completely, producing a control voltage of zero 
volts: consequently, incoming heartbeats are "coupled" with a 
gain of zero (i.e.. A^ = 0 for j = i). 

D'. Experimental Results 

We simulated three uncoupled oscillators with frequency 
parameters J{ = 1.2. ^ = 1.3. and wj = 1.4. Using the same 
settings, we acquired data from the hardware implemented 
oscillators and compared the results. Table I shows the oper- 
ating frequencies for the simulated and actual oscillators. Tne 
operating frequencies of oscillator 1 and oscillator 2 matched 
the simulation within 2.57c Oscillator 3 differed by 1.5% from 
the simulation. These errors could be made extremely low 
if precision resistors are used in building the oscillators, and 
gains are carefully trimmed to the exact values. Keeping in 
mind that a time scaling factor of 1000 was used, one sees 
that the frequency parameter roughly determines the oscillator 
frequency as expected. 



7.HACTTVE COORDINATION' SCHEM «03 . & 
'S 

TABLE I 
OSCILLATOR FREQUENCIES FOR THE SIMULATED 

AND ACTUAL THREE OSCILLATOR NETWORK 

Oscillator 1 

I Oscillator 
1 

Oscillator 
"2 

Oscillator 
3 

I Freq. Parameter a,-1=1.2 (j,-= 1.3 tu,-- 1.4 
| Simulated (Hz) 1245 1301 1332      1 
| AcrjiifRz) 1272 1329 1454      | 

Oscillator 1 

0.1 0.3 0.5 0.7 

coupling factor 

5.    Ratio of entrained frequency to natural frequency versus coupling 
;r for the simulated (A) and actual (■)'oscillator 1(-- = 1-2). 

Amplitude vs. Coupling Factor 

0.1 0.3 0.5 0.7 1 

coupling factor 

5.    Amoiitude versus coupling factor for simulated (A) and acrual (■) 
.lators. 

■Va rarer to ehe frequencies, u,-, in Table I as ehe natural 
tuendes. In ehe following experiments we use the ratio 
the entrained frequency to the natural frequency as a 
is for comparing actual and simulated results. First we 
npare the results of our oscillator network, with coupling 
;cted by hardwired connections, to the simulated network. 
measured the entrained frequency and the signal amplitude 
coupling factors ranging from A = 0.1 to A = 1.0. In each 
a all oscillators were set to the same coupling factor. In 
. 5, which shows the entrained frequency versus coupling 
tor. we see that the performance of the actual oscillator 
natches the simulated results extremely well, with the 
iation increasing slightly with increasing u1. Comparable 

ults were obtained for oscillators 2 and 3. The amplitude 
the entrained frequency versus coupling factor is shown 
Fig. 5. Two trends are evident from our data: the ratio 
in trained frequency to natural frequency increases almost 
:ariy as the coupling factor increases, while the amplitude 
:raases with increasing couDiing strength. 

0.1 C.3 0.5 
coupling factor 

0.7 

Fig. 7.    Ratio or" entrained frequency ;o natural frequency versus coupling 
factor for the simulated ix) anu actual (Bl osciibtor I using FM coupling 

4 - 
Amplitude vs. Coupling Factor 

0.1 0.3 0.5 0.7 1 
coupling factor 

Fis. S.    Amplitude versus coupling factor for simulated (x\ and actual (■) 
oscillators with FM. 

Figs. 7 and 3 show the results for oscillator 1 when the same 
experiments are repeated, but we use an FM link to coupie 
the oscillators. Again, oscillators 2 and 3 behaved similarly 
to oscillator 1. With FM coupling the oscillators entrained to 
much lower frequencies than when a hardwired connection 
was used. Additionally, the increase in coupling strength did 
not have as much effect on the oscillator amplitudes in ehe 
FM coupled network. There is significant error between the 
performance of simulated oscillators and the FM coupled 
oscillators, but more importantly, the trends are still similar. 
Just as important is that the behavior of the FM system 
is consistent. The relationship between frequency ratio and 
coupling factor is slightly more linear for the simulated 
oscillators. The frequency ratio verses coupling factor data 
for the FM coupled oscillators looks similar to the simulated 
results, but rises with a smaller slope. The error is greatest 
at the highest coupling factor. The amplitude data starts out 
with simulated and FM coupled oscillators matching very well 
at low coupling, has the greatest error between A = 0.3 and 
A = Ö.5. and shows little error at higher coupling factors. 

A large portion of the error in the FM data can be attributed 
to the manner in which the data was acquired, rather than to 
the FM system. When the heartbeat circuits were connected to 
the data acquisition board, the transmitters were as close as 1 
foot from each other. Unlike most miniature FM transmitters, 
which have a 5 mW output power, our transmitters have a 75 
mW power output. While ehe higher output power affords a 
sreater broadcast range, at close range there is considerable 
interference between devices. Distortion is noticeable in ehe 
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Harc.vired, ccupling=.1, w1 = 1.2, w2=1.3, w3=1. FM, couplings.1, w-| = -j 2, w2=1.3, w3=1.4 

0.232 0.233 0.234 0.235 0.235 0.237 0.233 0.229   0.24  0.241 
time (sec) . 

0.17     0.171     0.172     0.173    0.174    0.175     0.175     0.177    0.178 
time (sec) 

Fis. 9.    Hardwired   coupled   osciilacSr Network   entrained   to   1472   Hz     Fig. 10.    FM coupled oscillator network entrained to 1-15 Hz (A = 0.1). 
: A = 0.1). Oscillatocs bejin to entrain at 0.23c s. 

received heartbeat signals, so we expect the behavior of the 
van der Pol oscillators to be affected. In a scenario where 
agents are randomly distributed rather than clustered together, 
there is less interference and the behavior of the FM coupled 
system is likely to improve. 

Also, the presence of the radio link can be modeled as a 
complex system block in the oscillator diagram of Fig. 4. If 
we neglect this block, we are neglecting a significant portion 
of the overall dynamics and yet we still expect the oscillators 
:o entrain as theoretically predicted. 

While amplitude distortion is a problem in AM systems. FM 
systems are plagued by phase distortion. The phase distortion 
results when the phase relationship between the carrier and 
the sidebands are altered [11]. Phase equalization networks 
can be used to correct this problem. Of course a price is paid 
for higher quality signal processing. One disadvantage of using 
inexpensive off-the-shelf communications hardware is that cir- 
cuit schematics and specifications are often unavailable, and it 
;s difficult to know exactly what type of performance to expect. 
Nevertheless, our broadcast-based coordination scheme does 
not demand a high quality FM link. We are more concerned 
that the oscillators stay entrained and that the network behaves 
accordingly to changes in coupling factor, than we are with 
the specific entrainmenc frequency. 

Figs. 9 and 10 show a three oscillator system entrained 
to a common frequency for a coupling factor of 0.1 using 
both hardwired and FM coupling. In the hardwired case we 
captured the data as the oscillators moved from free oscillation 
:o full entrainment. We see that there is a brief transient thac 
occurs between the time when the oscillators first couple until 
they settle to the entrained frequency. The transient was too 
long in the FM case to display the transition in one frame. 
IT.us. the graph shows the oscillators after they are fully 
entrained. Fig. 11 shows the behavior of the network in a 
leader-follower configuration. We elect oscillator 2 as leader 
.ind see that the leader does not change its behavior, but 

Leader-Follower, Leaden  Osc 2,ccuplirtg=3 

0.252    0.253     0.254    0.255    0.255    0.257     0.253     0.259     0.25 
time (sec) 

Fig. 11.    Leader-Foilower configuration with oscillator 2 (dashed line) as 
leader I A = 0.3). Oscillators entrain in t'requency but not in phase. 

the followers entrain to the leader's frequency. Unlike in a 
mutually coupled configuration, when oscillators entrain to a 
leader their entrained frequencies are not in phase. 

IV. GLOBAL SPEED CONT-ROL 

Our broadcast-based coordination scheme will be applied, in 
many cases, to simultaneously initiate a common action within 
a swarm of Army Ants. Used in this manner, the entrained 
frequency serves only as a trigger as long as all the agencs' 
heartbeats synchronize, their coupling strength is irrelevant. 
Tne global speed controller requires two properties of mutually 
coupled van der Pol oscillators. To control agents' speed we 
require synchronization behavior so chat all asents travel at 
ehe same velocity. Also, we empioy a property presented in 
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ur results from Section III: the entrained frequency increases 
.most linearly wich increasing coupling factor. Thus, we effect 

;!obai change in speed by changing the strength at which 
ear.beats couple. 

Tne global speed controller application was chosen to 
emonstrate that our method could be used to trigger other 
ehaviors. By detecting thresholds in dynamically entrained 
ariables. practically any behavior can be symbolically cng- 
ered. Similarly, the same approach can be used to control 
ianv behaviors or decisions. This also shows how a local 
ndividual) decision can affect a global change. 

In this section, we explain the importance of global speed 
oncrol to the Army Ant scenario. Then, using the three 
eartbeac circuits we show how to implement the global 
oeed control. We discuss the additional hardware required 
3 interface the heanbeac circuit to motor controller chips and 
j the Army Ant's processor, the 63HCI1 microcontroller [2]. 
.asily. with one heartbeat integrated into an army ant we use 
le global dynamic created by the three heartbeats to control 
-ie robot's speed. Tne performance of the speed controller is 
valuated for several differenc coupling factors. 

One situation where it is desirable to have all agents moving 
t the same velocity is when agents must cooperatively carry 

pallet. Assuming that agents beneath a pallet can align 
nemselves along the direction of motion (see [IS]), we would 
,ke them to travel at a common speed while carrying the 
oad. A pallet only rests on top of a group of agents: it is noc 
isidly attached. In a group of agents that are not traveling at 

uniform speed, slower moving agents may eventually lose 
ontact wich the pallet as faster agents carry it away. 

While not as critical as the pallet carrying example, global 
oeed control is useful for some ground maneuvers. Suppose 

. grouo or" agents must search a large area. Agents traveling ac 
ne same speed will cover roughly the same amount of ground 
.nd expend their resources at the same rate. The intention of 
-.e Armv Ant swarm is to accomplish goals cooperatively, 
ith no one agent assuming a greater role than anocher. By 
«raising speed control we can better maintain homogeneity 
i the level of activity of the swarm. 

As we have previously discussed, an important characteristic 
f our coordination scheme is that it reacts globally to local 
hanges. If for some reason one agent in the heartbeat network 
enses that it must decrease its speed it will lower its coupling 
crength. causing the entire heartbeat dynamic to oscillate ac a 
-lower frequency. Tne global reaction of the network implies 
hat if a group of agents is carrying a pallet toward an obstacle, 
>nly a few agents in frone need to detect the danger in order to 
:lude disaster. As soon as the few agencs begin to slow, their 
eaction will be sensed by the heartbeat dynamic and every 
nember of the group will decrease its speed accordingly. 

\. Hardware Implementation 

~o -salize our global speed controller we need a way to 
transfer information from the heartbeats to the motor con- 
trollers. We show chac this is accomplished very easily using 
i r'reouency-co-voitage convener. Also, we wane the speed 
:o be affected only when the heartbeats are coupled. When 
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heartbeats are oscillating freely agents are noc considered to 
be part of a collective and do not need to be coordinated. 

11 Heartbeat to Motor Controller Interface: The first stage 
oi our interlace is a frequency-co-voltage iF-Wi circuit. A 
freauency-to-voitage converter outputs an analog voitage that 
is proportional to the frequency of the input sigr.ai. ihe 
eain. specified in voles per Hz. is user denned by a rew 
external resistors and capacitors. Our motor controller chips 
require a digital velocity command. Therefore, we need to 
insert an analog-to-digital converter between the output or the 
FA' convener and the motor controller. The motor controller 
outputs a pulse width modulated signal to an H-bndge circuit, 
which drives the motors. The 68HC11 microcontroller includes 
an analog-to-digital converter: so wich only one additional 
integrated circuit (the F/V converter) we can interface a 
heartbeat circuit to an army ant's motor control hardware. The 
interface provides a velocity command to the motor controller 
that varies linearly with the heartbeat frequency of oscillation. 

The question arises: How do we keep the frequency of 
uncoupled oscillators from influencing agents' speed? The key 
lies in the fact that, in a mutually coupled system of van 
der Pol oscillators, the entrained frequency will always be 
greater than any of the original free frequencies regardless 
or" the coupling factor. Consequently, we can set a frequency 
■"trip point" that is slightly greater than any free frequency in 
a network. Assuming that the frequency separation between 
any two robot heartbeats is smail. the trip point can be fixed. 
Our motor control algorithm issues a "do nothing" command 
when voltases at or below the voltage corresponding to the 
frequency crip point are received from the F/V' convener. An 
output from the F/V converter that is above ehe crip point 
indicates that the system has coupled. Only then does the 
velocity command to the motor change proportionally with 
ehe heanbeac frequency of oscillation. 

Each army ant shall have the described interface between its 
heanbeat circuit and its motor control electronics in an actual 
scenario. In this experiment we use three mutually coupied 
heartbeats with only one heartbeat integrated to an army ant. 
Tnus. we acquire velocity data on only one agent. We have 
already shown that the heartbeats will entrain to a common 
frequency. Given that the trip points and frequency-to-voltage 
sains are the same in every interface, we can assume that the 
global heanbeac dynamic effects the same speed command in 
all asents. 

B. Experimental Results 

The control of the Army Anc drive motors for this ex- 
periment is open loop with respect to velocity, i.e.. we do 
not utilize tachometers to provide feedback. Therefore, only 
commanded signals are ac our disposal. We choose to acquire 
the mocor velocity command daca to evaluate our global 
speed controller rather than the signals to the motors. Tne 
motor drive signals are pulse width modulated, and noc as 
convenienc a formac. In the first set of experiments we use 
hardwired coupling, and observe the commanded speed to the 
asenc*s drive motors as its heanbeac transitions from rreeiy 
osculating to fuily entrained. We repeac the experiment tor 
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TABLE II 
PREDICTED AND ACTUAL SPEED DAT.A FOR HARDWIRED COUPLED SYSTEM 

coupling 
factor 
a) 

entrained      1      predicted      1     actual 
frequency               speed               speed 

(Hz)         \        (rcm)         1     Cram) 
0.3        j          1724          |          10.50          !      10.45     j 
0.5        |         T950          |          11.33          i      H. 32     | 
0.7       |         2136         |         13.00         |      12.99 

TABLE in 
SPEED DATA F?.OM FM COCPLED SVST 

!   coupling   j 
i      factor     1 
1         •,         1 

entrained 
frequency 

er.craiaea 
freauency 

F.'.f 
! 

1        0.3        1 1507          j 1674 \0.':i      ' 
|       0.5        1 1590          I 1344 11.23 
|        0.7        1 182S          I 1964 11.91      I 

three different coupling factors: A = 0.3. A = 0.5. and 
A = 0.7. As expected, the speed command increases with 
increasing coupling strength. 

Given the entrained frequency data collected in the last 
section, and the conversion gains used in the speed controller, 
we can predict the speed commands for each coupling factor.3 

Note chat predicting the speed at which coupled agents will 
travel is not a goal of the global speed control application. The 
object of the speed controller is to ensure that all agents move 
at a common speed, and that any change in an individual's 
soeed will be reflected in every; agent whose heartbeat is part 
oi the dynamic. Tne entrained frequency is dependent upon 
rhe number of agents in the network. For large systems it may 
be inconvenient to predict the speed, and impossible if the 
number of agents is unknown. Besides, the Army Ant concept 
does noc support deterministic, centrally computed knowledge. 
Yet comparing the predicted speed to the data we acquired 
provides a useful check to validate our controller. 

Table II shows the predicted speeds for the three coupling 
factors based upon the entrained frequencies acquired in 
Section III. as well as the speed data collected in these 
experiments. The fact that the predicted data matches the 
actual data so closely indicates that the frequency-to-voltage 
conversion remains linear over a wide frequency range. 

Tne same experiments were conducted using FM coupling. 
While we can expect the entrained frequency to remain con- 
stant for ;: given coupling factor and a set number of agents 
when hardwired coupling is used, this is not the case when 
heartbeats are coupled through FM. Just as we experience 
degrees in the quaiity of reception on our FM radios, the 
performance of our broadcast-based system is subject to vary 
somewhat with external interference. Therefore, it is not very 
meaningful to compare the predicted speed to the actual speed 
in the FM case. We have already validated the speed controller 
with our hardwired data, so we present the FM data in a 
slightly different manner. Using the speed data acquired with 
FM coupling, we can work "backward" and estimate the 
entrained frequencies. The entrained frequencies from these 
experiments, when compared to the data from the hardwired 
coupled system, provide an example of how the performance 
of the FM system can deviate. Table FII summarizes the data 
for three different coupling factors. 

The error between the acquired speeds for the hardwired 
and FM cases is under 5% for A = 0.3 and A = 0.5 and 
under lOFc for A = 0.7. The A/D output, which provides the 
speed command to the motor controller chip, was acquired and 

;The entrained frecuencv divided by the F/V gain gives an analog voitage. 
This voitase. when multiplied by the maximum rpm (25 ram; and divided by 
:ne maximum A/D voltaze (5 v>. provides the expected speed. 

harcwired, csuoiina=.5 
15 
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c 
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0 12 3 4 5 
time (sac) 

Fis. 12.    Global speed for a hardwired oscillator network with a coupling 
strensch of A = 0.5. 

converted to an rpm value in our software routine. Figs. 12 
and 13 show plots of the commanded speed for cases in 
which the heartbeats were coupled via hardwired connections 
and FM. At an arbitrary time during the data acquisition the 
oscillator receivers were turned on. The subsequent step in the 
speed occurs as the system transitions from an uncoupled to 
a coupled system. The level of the commanded speed of the 
coupled system is dependent upon the coupling factor used. 
Notice that the graphed speeds are all integer values. All 
velocity commands were truncated by the algorithm during 
implementation. The velocity data shown in Tables II and III 
was obtained through examination of the raw output from the 
A/D. 

We have shown that the heartbeat dynamic can easily 
be applied as a global speed controller. To interface the 
heartbeat circuit to an agent's motor control hardware, only 
one additional IC is required. The essence of the speed con- 
troller interface, the frequency-to-voltage convener, exhibited 
a hishly linear response over a wide range of input frequencies. 

The performance of the speed controller compared favorably 
to predicted results. We showed that changes in coupling 
strensth produce the same directional trend in the commanded 
velocity to an agent's drive motors. Additionally, we have 
verified that the error introduced by coupling the system 
through an FM communication link is at an acceptable level. 
In short, our broadcast-based coordination scheme was suc- 
cessfully and simply applied to one of the more complex 
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FM, coucling=.5 

3 12 3 4 = 

time (sec) 

j.    Globai speed for an FM coupled oscillator network with a coupling 
■:h or' A = 0.3. 

viors requiring coordination. The results attained in our 
d control experiments serve to reinforce our confidence 
the heartbeat concept is a viable method tor coordinating 
v actions within the Army Ant swarm. 

V. OTHER APPLICATIONS/USES 

he applications of coupled nonlinear oscillators in the 
v Ant scenario are not limited to leader selection and 
nror.ization. In this section we explain the use oi similar 
.lator schemes for error detection. 

rror Detection in Distributed Load Bearing 

j lift and carry a palletized load. Army Ant robots need 
;: together to establish a stable transportation mechanism. 
•ethod for controlling the collective behavior of Army Ant 
■ts for load transportation is described in [18]. It is achieved 
electing a leader, without direct communications, using 

force sensors mounted at the point of contact with the 
:t. The method described in [IS] results in stable behavior 
-e horizontal movement of agents under the pallet. The 
-od described here differs in the type of-communicauon 
:: in [18], coupling is a physical force transmitted by the 
oad: here, we use a broadcast signal which can be used 

. no physical contact at all. 
uring lifting and transportation of pallets it may be impor- 
that the pallet be supported equally (to some degree) by 
ooots. It is possible to detect this condition by comparing 
sensed vertical force on agents. However, since there is no 
.rai controller, this has to be done collectively. Assuming 
:he robots under the pallet can receive signals from their 

-mates, they can form a ring or fully coupled network 
:re the feedback gains of the oscillator are linear functions 
.-.a output of vertical force sensors (Fig. 4). 
"-.e addition of a variable feedback gain to the oscillator 
:el enables the robots to detect whether the pallet is level 

and/or the load distribution is even. Feedback gain factor A(i 

chanses over time as a function of the output of the force 
sensor. Therefore, the feedback gain or' the each oscillator 
chanses according to the vertical force cjrr.cor.ent sensed by 
the robot. 

L'sins the incoming signals from other robots and force 
sensor output, robots can determine the difference e, between 
theirown sensor and the sensor of the "previous" robot (or the 
averaae of all incoming signal in the full coupling case). In 
other words, the signal a, is a relative measure of discrepancy 
in force sensor outputs. Robots that detect a difference beyond 
the predefined parameters can broadcast a warning signai. 
Transportation starts and continues as long as there is no robot 
broadcasting a warning signai caused by this or any other 
problem." 

The error sisnahe,- = A[tj V,\, 

(In ring coupling, j = i - 1 only). 

In the following, the oscillators use ring coupling and all 
coupling coefficients are set to -0.3. The feedback gains A,,- 
vary according to the linear mapping7 from internal sensor to 
sain. When all gains are approximately equal, entrainment is 
reached afcer a time with frequencies in the range 0.8-1.2. 
For our purpose, we set all oscillator frequencies -■- to 1. 
However, the amplitude of the oscillations will differ from 
aaent to asent if the feedback gains are not the same. Each 
asent is able to compare its output with the output signal of the 
coupled teammate. In addition, the ring configuration enables 
each robot to detect the sensor output variations occurring in 
any other teammate by comparing its sensor output only to the 
previous robot in the configuration. Because all such compar- 
isons accumulate as coupling signals pass along the network, 
the errors in feedback gains (force sensors) can be detected 
by other oscillators, even if they are not nearby. The robots 
may adjust their oscillator feedback gains by exerting more 
of less force or by moving to more desirable spots—thereby 
equalizing vertical forces until oscillators agree. 

In full coupling, the entrainment is much faster than in the 
previous case because or" the multiple effects on each agent. 
The coupling coefficient is chosen smaller (~0.1) to reduce the 
strength of incoming signals. The error signal is much smaller 
in magnitude for a fully coupled network. For this reason, 
in error detection applications, a ring coupled network may 
be preferred. The difference between full and ring coupling 
methods are summarized in Table IV. 

It may be necessary to adjust the allowable ranges for 
error signals so that problems may be detected regardless of 
the number of agents. As long as the number of agents is 
greater than four, the same parameters for allowable ranges 
are likely to work for all cases. When additional oscillators 
are successively added to the system, the change in the signal 
levels is less and less significant Addition of new oscillators to 
a ring network of eight oscillators does not have a perceivable 

'Of course, an explicit communication method could be used to detect 
uneven load distribution at the expense of added complexity and cost. 

: Maximum and minimum values of the sensor output corresponds to gains 
1.3 and 0.7. respectively. 

.a; 

.<Si 

;#* 

im 

■a 
■■i; 
:*3 

H* 

■ 8:? •■ 

Hi 

ill 
1 tl 

3i 

!-T 

it' 



TRANSACTIONS CN SYSTEM S. MAN. AND CYBERNETICS—PART 3: CYBERNETICS. VOL. v'0. -. AL'G'CST 

rescSacfc Gains Error Sianals 

1.C5 V 

1; 

0.95 f 

0.91 
i 

0.851- 
0 20        40        50        50       100      120 

(a) 

1.1 

0.5 I li 
5,1-05 . 

I' 
1 

o> c 
'~ 0.95 u 1 

-0.5- 

0.9 ; 

0.85 
i 

50 100           150 200 0 50 100            150 200 
time time 

aback jains and error signals of rive oscillators in full (topi and ring ; bottom) coupling (A = 0.1 for full. A = 0.3 for nns ronnzuraiiorti. 

TA3LE IV 
DIFFERENCES  BET'.VHS.V FfLL AND RING COLTLLNG METHODS 

Full Coupling Ring Coupling    | 
communication 
Type 

broadcast filtered using ID 
numbers 

error signal: 
relatively low 

no 

relatively high 

yes 

level 

propagation 
delay 
coupling coef.s -0.1 or less -0.3 
enminment fast slow 

additional 
requirements 

total number of 
robots in a team 
must be known for 
averaging 
nurooses 

agents must 
"choos«" another 
for coupling 

effect. Similar characteristics are observed in the period and 
ampiicude of the entrained oscillators. Furthermore, a discrete 
mapping function from sensor output to the feedback gain may 
improve the detection of range violations. 

In simulation examples given, we changed the feedback gain 
of oniy one agent, and plotted e,;'s computed by ail agents. 
As shown in Fig. 14. at least two agents are able to detect 
ihe error in both coupling methods, although detection by 
one agent is sufficient for the swarm to become aware of the 
problem: a large value of the magnitude of error signal (in one 

or more agents) is an indication of uneven load distribution. 
Tne threshold value for error detection is not the same for 
both coupling configurations. Because the error signal is much 
smaller in magnitude for a fully coupled network, the threshold 
value must be chosen accordingly. 

The stability of the coupled oscillator system given here 
is a theoretically unproved issue. We are aware of no such 
proof for our general oscillator circuitry. With the addition of 
unmodeled RF circuit dynamics, such a proof is unlikely. 

VI. CONCLUSION 

Distributed multi-agent systems such as the army ants 
offer new and promising possibilities in the application of 
robotics to industry. Despite the many advantages inherent 
to distributed robotics systems, they have traditionally been 
very difficult to coordinate and control due to the absence 
of a central supervisor or a hierarchy of command. Agents 
in a distributed system muse be capable of collectively ac- 
complishing tasks using oniy locally sensed information and 
little or no direct communication. Toward this goal, this paper 
has introduced a broadcast-based coordination scheme that 
provides a global group dynamic that can control individual 
agents, is influenced by all agents, but does not reside in any 
agent. 

Our scheme addresses many of the coordination problems 
that exist in the Armv Ant scenario without compromising 
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v of the project's principles. In adhering to the principles 
homoseneity and distributed control we maintain all of the 

■r.erus associated with the Army Ant concept, 
in the fully-coupled broadcast-based coordination scheme. 

:encs are never addressed directly; all communication is indi- 
ct, in the form of broadcasts. Uniike direct communication 
stems which require a larger bandwidth as the number of 
:ents increases, our method is completely scalable. The group 
namic automatically adapts to changes in the number of 

:ents in a coupled network. In fact, it reacts only to the 
mcosice of all the coupled heartbeat signals without regard 
the number of heartbeats. As such, the scheme is ideally 

iced for a dynamic swarm, wherein army ants adjust their 
it to fit the task at hand. 
While our coordination scheme requires the assignment 

a unique heartbeat frequency to each agent, we in no 
iv violate agents' homogeneity. The heartbeats are never 
ed for the purpose of identification. They can. however. 

: used for discrimination during leader selection. We have 
own that our scheme can be used co entrain agents to a 
ader's frequency. Yec. most of the proposed applications of" 
e coordination scheme (e.g.. synchronized steering, lifting. 
:d speed control) only require entrapment to any corn- 
on frequency. Furthermore, each heartbeat can replace any 
her heartbeat in a coupled network, and the failure of a 
:artbeat circuit results only in that particular agenc being 
.eluded from the coordination effort. Thus, our coordination 
ethed preserves the  innate robustness of the  .Army Ant 

Just as the Army Ant swarm is a reactive/behavior-based 
stem, so too is the coordination scheme's network of cou- 
ed heartbeats. Tne proposed method does not require any 
asoning or planning. Rather, we exploit the known properties 
' coupied nonlinear oscillators to create the global group 
/namic that controls agents' actions. The dynamic naturally 
acts to any changes in the network: because the dynamic 
;nsiscs of the composite signal of all heartbeats in a network. 

is sensitive to variations in individual heartbeats. Tne 
active nature of our scheme allows the army ancs to respond 
:ickly in a dynamic environment. 
The primary benefit of this research is that the broadcasc- 

.sed coordination scheme was validated by the actual con- 
ruction and testing of a system of heartbeac circuits. By 
aiizing the concept with actual hardware, we are forced to 
.'aid making assumptions that may later prove impractical, 
jme or' the results are summarized as follows: 

• Tne behavior of the realized heartbeats compared favor- 
ably to the predicated behavior that was obtained through 
simulation. An actual network of three heartbeats was 
shown to entrain either to a leader frequency or to a com- 
mon frequency over a wide range of coupling strengths, 
in the presence of completely unmodeled transceivers. 

• '.: is possible to broadcast and receive heartbeats using 
en ir.exoensive FM communication system. The FM link 
introduces some distortion into ehe network of coupled 
oscillators, altering its behavior somewhat. The devia- 
:;ons produced by coupling the system with FM do noc 
adversely affect performance goals of the system. 

• The broadcast-based coordination scheme can be used 
to synchronize many actions such as lifting or steering. 
It can also be applied :o mors complex behavior, as 

controller examcie. We demonstrated in the siobai see 
have demonstrated a simple controller that detects when 
an a^ent is pan of a global group dynamic then aiiows the 
dynamic to control an agent's speed. In "his manner, ail 
asents in a network travel at the same speed and increase 
or decrease their speed in accord. 

• A proposed technique for error detection was devised 
which would allow one robot to adapt its contribution 
to better match that of its ceammates. Tnis automacic 
error detection and correction acts as a regulating group 
dynamic. 

Tnere are a few areas relating to the coordination of the 
Army Ant swarm chat require further research: 

• Further investigation on the conditions under which 
agents will be permitted to vary their heartbeat pa- 
rameters. Algorithms for executing this logic must be 
developed and tested. 

• The process of electing a leader deserves further consider- 
ation. Although we want to avoid a fixed hierarchy, some 
form of hierarchy in form of ''temporary leaders" results. 
Additionally, we must investigate how co implemenc the 
idea of selecting as leader the agenc with the highest 
heartbeat frequency with a minimum of communication 
and complexity. 

• The use of Al mechods for adapcive coupling paramecers 
may prove useful. To creace more robust and "'intelligent" 
system, genetic algorithms and classifier systems may 
be used co realize a method for on-line computation of 
necessary coupling coefficients for a particular task and/or 
situation. 
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ABSTRACT 

The Unmanned Ground Vehicle Competition is jointly 
sponsored by the SAE, the Association for Unmanned Vehicle 
Systems (AUVS), and Oakland University. College teams, 
composed of both undergraduate and graduate students, build 
autonomous vehicles that compete by navigating a 139 meter 
outdoor obstacle course. The course, which includes a sand pit and 
a ramp, is defined by painted continuous or dashed boundary lines 
on grass and pavement. The obstacles are arbitrarily placed, multi- 
colored plastic-wrapped hay bales. The vehicles must be between 
0.9 and 2.7 meters long and less than 1.5 meters wide. They must 
be either electne-motor or combustion-engine driven and must 
carry a 9 kilogram payload. All computational power, sensing and 
control equipment must be earned on board the vehicle. The 
technologies employed are applicable in Intelligent Transportauon 
Systems (ITS). 

A written design report and an oral presentation are required 
from -^ach team, and expert judges evaluate these along with 
inspecung the actual vehicles. Design judging focuses primarily on 
the design process rather than the implementation ofthat design in 
the actual vehicle. The later feature is evaluated by performance 
on the obstacle course. The team winning the design contest 
receives a SI000 award from SAE and is offered the opportunity 
to present their design paper at the SAE World Congress. The 
1996 competition was held at Walt Disney World in Orlando on 
Juiy 13-15. 

This paper presents the conceptual design of the vehicle and 
its components. Innovative aspects of the design are highlighted, 
along win descriptions of the electronics, software, computers, 
actuators, sensors, and the means of system integration. The steps 
followed -.a:the design process are described along with the use of 
computer-uded design. Considerations of safety, reliability, and 
durability ire included. The analyses leading to the predicted 
periormanceof the vehicle (speed, ramp climbing, reaction times, 
etc.) are also dracumented. Although not a factor in judging, the 
paper also mcJaaa icon estimate (not counting student labor) for 
'•he final product if it were a? be duplicated. 

rjSTRODUCnON 

CALVTN (Computerized Autonomous Land Vehicle with 
.'nteiligent Navigation), shown in Figure 1, is a battery powered 

three-wheeled vehicle with a computer visioa system for line 
following and ultrasonic sensors for obstacle avoidance. CALVIN 
was one of two vehicles entered by the Virginia Tech Team in the 
4th Annual International Autonomous Ground Vehicle 
Competition. 

Figure 1 : Overview photo of CALVIN 

This is the first year that Virginia Tech has participated in the 
competition. As part of our preparation, team members reviewed 
technical papers written by recent competitors and video tapes 
from the past two competitions. It became clear that the contest 
presents a formidable task and that a robust, well-developed and [ 
carefully tested design would be a basic requirement for success. | 
With this in mind, the team made a concerted effort to pursue 
simple, reliable, cost-effective designs for the base components and >, 
subsystems. This is also the approach recommended by Gifford, et I 
ai., [1995] as part of their winning philosophy in the 1995 l. 
competition. Keeping this approach in mind, CALVTN's design 
incorporates many of the features that have been used successfully 
in recent competitions. For example, like several past entrants, 
CALVIN is based on the chassis of a three-wheel golf can 
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Although this platform is larger than the ideal vehicle, ii does 
provide a rugged, stable base with ample space for equipment and 
payioad .Also following past successes, CALVIN uses a computer 
vision system for Une following and ultrasonic sensors for obstacle 
avoidance. The innovative elements of the design can be found in 
those areas that caused failure or were recognized as problems in 
otherwise successful vehicles from past competitions. These 
innovative features are discussed in detaii later in this paper. 

PROJECT ORGANIZATION 

PROJECT TEAMS - As one cf the largest technical 
universities m tie country, Virginia Tech has a talented and diverse 
student population from which to draw. .Although many large 
projects (such as the SAE Mini-Baja and Solar Car) have been run 
in the pas:., iha autonomous robouc project generated unparalleled 
excitemesjtaraong students and acuity. A small team of volunteers 
began wc.-aing to organize the project in the summer of 1995. By 
the fail ^anester, the combined team working together on the two 
vehicles'tad grown to almcss 50 students from across the Colleges 
of Enginering and Arts and Science. To direct the efforts to build 
CALVSf-, four separate anrups were formed to cover Mechanical 
Desigaj. Sensing & Control, Computer Vision, and Project 
Orgaruzauon with each aroup subdivided to distribute the work. 
To facilitate group cot-nnurucauon, meetings were held twice a 
week vith monthly presoitations given by each group. 

PROJECT TIMELBE - Organization and scheduling is a key 
ingredient in the succcsrof a project of this scope and duration. 
Although many intermediate objecuves have been achieved along 
the war, major project rriiestones are shown on the general project 
timeline at the end of triepaper. 

DESIGN PROCESS OVERVIEW 

GENERAL DESIGN DESCRIPTION - The general overall 
design of CALVIN will be described with reference to the 
photographs shown as Figures 2 and 3. Figure 2 shows a top view 
of CALVTN with the weather-protective top cover removed. The 
general layout of the base vehicle, along with a number of the 
major components, are visible in this picture. These components 
include the 24 volt drive motor, timing-belt drive and differential; 
the 12 volt linear steering actuator with integral feedback 
potentiometer, the microcontroller, the on-board emergency stop 
(e-stops); the three 12-volt batteries and the antenna for emergency 
stop and radio control when not in compeution. The 
microcontroller and electronics mount to a hinged shelf that opens 
to gave access to the pentium-based PC and power supplies. 
Figure 3 is a front view of CALVTN that shows the five 
bumper-mounted ultrasonic sensors and the two side-viewing 
cameras, along with some of the weatherproof Lexan used to 
encase the vehicle. 

DESIGN TOOLS - As with all aspects of our design, the tools 
used in the creative process were dictated by the overall objective 
of producing a safe, competitive vehicle. All Virginia Tech 
engineering students are trained in the use of either AutoCad or 
Cadkey, and both were used extensively in the design process. The 
uses of computer-aided design ranged from preparing a test course 
layout with a shape similar to the sample course shown in the 
contest rules, to detailed layout of the vehicle systems and 
subsystems. As an example, AutoCad was used to produce a 
layout (Figure 4) of the existing base frame of the golf cart 
Attachments and mortifications were then based on these drawings. 
Other software used during the course of the project included 

Figure 2: Top view photograph 
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Figure 3: Front view photograph 

spreadsheets, TKSolver!, MathCad and Mathematica for general 
mathematical modeling and MatLab for control and vibration 
analysis. Specialized software was also written to aid with steering 
kinematics and vision system modeling. 

DESIGN CRITERIA (SAFETY, RELIABILITY AND 
DURABILITY) - The most critical design criteria were those that 
involved safety and those necessary to meet contest rules. Beyond 
these fundamental requirements, a continuing effort has been made 
to incorporate reliability and durability into the final design. This 
goal has been pursued both through the careful specification of 
proven, reliable components and through extensive field testing 
during every phase of the design. In subsequent sections, brief 
discussions will help to highlight the effort to produce an inherently 
safe, reliable vehicle. Safety was also a top priority in all shop 
work and during field testing. 
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Figure 4: AutoCad Layout 

FAIL-SAFE BRAKES - Acceptable braking performance was 
assured by using the primary components from the original 
goif-cart braking system. The only difference is that the actuating 
force normally applied by the user through the foot pedal has been 
replaced by a fail-safe input force from a pneumaüc actuator. .An 
electro-mechanical valve and relay system control the operation of 
the pneumatic actuator. While the vehicle is in operation, the main 
power bus closes the relay, powering the valve, thus keeping the 
brakes disengaged. When the circuit loses power, valve power is 
lost and the brakes are engaged. This condition occurs when either 
the onboard E-stop or the remote E-stop is acuvated. 

STEERING ACTUATOR AND CONTROLLER - The rack- 
and-pinion steering system on the original golf cart was replaced 
with a 12-voIt DC linear actuator with integrated posmon 
feedback. The motor in this system is controlled by a Pulse Width 
Modulation (PWM) controller. The input signal to this controller 
can be generated by either the microcontroller, in autonomous 
mode, or a radio control receiver in manual override mode. 
Manual override mode is used for transportation of the vehicle. 

DRIVE MOTOR AND CONTROLLER - CALVTNs primary 
drive system uses a 0.746 kW, 24V DC motor with tachometer 
feedback for precise velocity control. Power is delivered to the 
rear wheels through a 1.8 to 1 timing belt reducer and the existing 
6 to 1 golf cart differential. The speed of this motor is controlled 
using a PWM H-Bridge controller. The controller is capable of 
adjusting its PWM duty cycle so as to produce an effecuve 
continuous output voltage from -24 to +24 volts and a current of 
160 amps continuous and 320 amps peak Like the steering 
system, the input signal to the controller can be generated by either 
the microcontroller with active velocity control, in autonomous 
mode, or a radio control receiver in manual override mode. 

ULTRASONIC AND TACTILE OBSTACLE SENSORS - 
CALVIN is equipped with two types of sensors in order to 
facilitate obstacle avoidance. First, a fan-shaped array of five 
ultrasonic sensors is used to locate obstacles potentially in the 
vehicle's path. In the event that an ultrasonic sensor detects an 
obstacle, an algorthim is run in order to determine how the 
vehicle's path should be changed. This routine considers the 
vehicle's distance to the obstacle, and which ultrasonic sensors in 
the array detected the obstacle. 

The tactile sensors consist of three push-bars on the front of 
the vehicle. These sensors are used to indicate that the vehicle has 
collided with' an obstacle. In the event that a tactile sensor is 
actuated, an interrupt routine immediately stops the vehicle and 
performs a reverse maneuver. The reverse maneuver steers the 
vehicle based upon which tactile sensor was actuated, in order to 
relocate the vehicle further from the obstacle. The vehicle then 
returns to normal operation and continues on its path around the 
track. The ultrasonic and tactile sensor arrays can be seen in 
FigureS. 

COMPUTER AND SOFTWARE - The vision system is 
implemented using a pentium lOOMHz PC and an FF1 DSP Frame 
Grabber from Current Technology, Inc. All vision algorithms were 
developed using standard C and the frame grabber's C libraries. 
Standard C is also used to code and compile the software necessary 
to communicate between the computer and the microcontroller. 



Figure 5: Ultrasonic and Tactile Sensor Arrays 

The vision system is based on two cameras looking to the left 
and right of the vehicle, but only one camera is active at a time, 
'^"ben the active camera obtains a series of three consecutive poor 
images, the system switches to the view on the other side. Image 
processing is performed on a view of the course directly adjacent 
to the vehicle. Of this whole image, only two smaller regions of 
interest (ROI) are considered to be significant    All image 
processing is then performed on these ROIs only, in order to save 
computation time.    The frame grabber first thresholds the 
gray-scale camera image to convert the image to binary black and 
white. The thresholding routine is dynamically adjusted for each 
ROI to recognize the white paint on grass as the brightest portion 
ax the image. This means that the ROI images used to navigate 
consist of white line segments on an all-black background.   The 
vision code then uses these two ROI to detect a forward and a rear 
segment of the course line. In order to discern the line, the routine 
finds the grouped blobs which it extracts as a segment of the line. 
The location of the centroids of these blobs are then compared to 
those found when initializing the vehicle in the center of the course. 
This information is used to determine the vehicle's distance and 
angle relative to the line defining the course. The superposition of 
this zeroth order and first order path information results in a 
desired steering angle.    This angle is then processed to be 
transmitted to the microcontroller. 

The microcontroller integrates the desired steering angle 
(based solely on vision) with information from the ultrasonic and 
tactile sensors. Priority must be assigned to obstacles potentially 
m üie vehicle's path; therefore tactile and ultrasonic sensor 
information is, in some cases, weighted more heavily than the 
vision in determining the actual steering angle. Consequently, the 
microcontroller combines the three inputs to determine the path of 
:he vehicle. In effect, the microcontroller performs all onboard 
navigation. 

_5ENSORS, ELECTRONIC LAYOUT AND SYSTEM 
INTEGRATION - Figure 6 is a schematic diagram showing the 
general architecture and integration of the sensors, electronics and 
computers used on-board CALVIN. Once an image has been 
processed, the PC sends a steering angle to the microcontroller via 
a senai connecuon. If the course boundary line is not clearly 
Jeteoed by the vision system in several successive frames, the PC 

also sends a command to the microcontroller to switch to the 
second camera, and the vls,on system begins tracking the opposite 
line. Ultrasonic signal processing as well as integration and direct 
control functions are handled by the Motorola 68HC11-based 
microcontroller. This microcontroller also executes closed-loop 
control of the steering and drive motors using pulse-width- 
mcdulated signals. A schematic layout of the battery connections 
and power control elements is shown in Figure 7. 

DESIGN PROBLEMS AND SOLUTIONS - Throughout the 
design process for CALVIN, precise design tools and techniques 
were used whenever possible. Occasionally, however, an event 
would arise where trial-and-error methods were necessary. The 
first arose from the imprecise geometry of the base frame. Calvin 
began as a golf cart, but came with no factory dimensions. 
Measurements were made and CAD drawings constructed, but the 
angles of the frame were difficult to accurately measure, and small 
differences had a great effect on the positioning of integral parts. 
This forced a trial-and-error technique on mounting the drive 
motor, steering actuator and tachometer. 

Electrical problems are also unavoidable on a vehicle with so 
many components. Floating grounds and ground loops are primary 
contributors to these difficulties. During the layout and wiring of 
the vehicle, an effort was made to keep the wires as short and 
organized as possible to facilitate quick troubleshooting. Still care 
had to be taken to reduce the interference in many of the electrical 
components, most notably the cameras and the monitors. To do 
this, ground wires were consolidated, and shielded coaxial wire 
was used when possible. 

PERFORMANCE PREDICTIONS 

BRAKING AND SPEED CONTROL - The most cnucal 
performance issues were those that involved safety requirements 
and meeting contest guidelines. Braking and speed control, 
especially on an inclined surface, are obviously of great 
importance. An earlier section of this paper describes the design 
of the braking system and how the foot pedal input was replaced by 
a pneumatic actuator. Acceptable performance was assured by 
selecting an actuator that supplied the same brake cable tension as 
a typical user would supply through the brake pedal in an 
emergency condition (roughly 500N). 

Accurate speed control is important for safe vehicle operation 
and for assuring constant performance of the vehicle on sloped 
surfaces. Several past contestants reported control problems that 
were directly attributed to speed variations. Velocity is controlled 
on CALVIN using a tachometer attached directly to the output shaft 
of the drive motor to provide a voltage signal proportional to 
vehicle speed This signal is fed back to the microcontroller, which 
issues a pulse-width-modulated control signal to the motor driver. 
By modeling the vehicle as a mass moving on a frictionless surface, 
control system gains can be selected to give stable velocity control 
with an adequate response time. 

RAMP-CLIMBING CAPABILITIES AND SAND PIT 
PERFORMANCE - Competition rules permit ramps or inclined 
terrain to have a grade of up to fifteen percent. This information, 
coupled with the 8.04 km/hr maximum allowed speed and the 
vehicle's estimated weight, can be used to directly comoute the 
minimum required power of the drive motor (since power equals 
force multiplied by velocity in the direction of the force)  A twenty 
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percent grade and a 8.04 km/hr vehicle speed produce a vertical 
velocity component of 1.61 km/hr. Assuming a 1780 N vehicle 
weight and no friction results in a required drive motor of about 
0.746 kW. Recognizing that steep inclines would be traversed at 
1.61 km/hr or less, this was taken to be a conservative estimate. A 
0.746 kW continuous, 1.49 kW peak, 24 volt DC drive motor was 
selected and purchased from a surplus catalog. Using a speed 
reducuon of about 10:1 through a timing belt drive and the golf can 
differential, the desired 8.04 km/hr peak speed and ramp-climbing 
ability were achieved as predicted. Designing a vehicle to traverse 
i sand pit was a less precise prediction. Goodyear, who donated 
he vehicle ures, provided assurances that these wide, soft tires 
would perform well in sand and would not damage the grass 
portion of the course. 

REACTION TIMES AND LINE-TRACKING 
PERFORMANCE - With any digital control system, the faster the 
update speed of the controller, the more stable the performance of 
he controlled device under rapidly changing conditions. The 

computer vision and ultrasonic acquisition and computation 
requirements obviously limit the overall update rate of the 
controller. The team attempted to partially address this issue 
during conceptual design by separate, parallel processing of the 
ultrasonic and vision feedback. The vision feedback processina is 
accomplished directly on the frame grabber card or in the host 
Penuum 100 MHz personal computer. Operation of the ultrasonic 
sensors and the associated processing are accomplished in the 
Motorola 68HC11 -based microcontroller. This allows a maximum 
update rate to the steering and drive motors of about 6 Hz. At peak 
vehicle speed, this amounts to an update about once every 0.3 m of 
travel. Through testing, this has been determined to be marginal 
for robust line tracking; one or two bad images can result in the 
vehicle traveling out of bounds. Nevertheless, within the constants 
of the existing equipment, this is a reasonable update rate. At 
competition, we intended to run CALVIN at peak speeds of about 
3.22 km/hr to maintain stable operation. 
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.NNOVATTVE ASPECTS OF THE DESIGN 

The design philosophy used in developing CALVIN did not 
peafically include innovation as a design objective. Our primary 
/ojecuve was to design the most competitive possible vehicle 
-nder the constraints of the governing contest rules and limited 
inanciai resources. Nevertheless, the resulting design is beiieved 
o be innovative in several significant respects. In all cases, 
.owever, the innovative features are intended to address problems 
r shortcomings reported in similar vehicles from previous 
ompeuuons. 

A simple example of this was the design of a system that uses 
nly three 12-volt deep-cycle batteries as the source for all on- 
oard power. Power for the PC and peripheral equipment was 
applied using an 400 Watt inverter to generate 120 volt AC 
ower. Other DC power requirements were met through small 
n-board power supplies or through series connecUon of the 
anenes. This power supply arrangement was previously shown as 
izure 7. While this may seem to be a minor issue, a number of 
revious teams, including the first-place 1995 Colorado team 
jifford, 1995], cited the maintenance of several dissimilar 
aitenes as a significant disadvantage. The University of West 
';nania team also cited the weight penalty and potential danger 
isociated with their eight- battery, 96-volt DC bus system [Banta, 
995]. 

A second, and more significant, innovative feature of CAL VTN 
; the use of two independent cameras for line tracking. This 
'.novation is an attempt to address, in a cost-effective way, the 
roblems noted by 1994 and 1995 competitors with single-camera 
/stems [Murphy, 1995, GifTord, et al., 1995]. Originally, the 
;am hoped to use two cameras and two independent frame 
rabbers. With such a system, each camera could continuously 
ack one of the two course oundary lines. Unfortunately, two 
3me grabber cards or a single multi-input frame grabber proved 
> be too expensive, and an alternative innovative solution was 
irsued. The end result was to use a simple relay-actuated video 
vitch to change camera views when the course boundary lines 
sappeared or became difficult to detect Using a line-integrity 

ieck based on the size and grouping of white image areas, the 
rapuier vision system makes three attempts to find a line with the 
rrent camera. If two successive attempts fail, the vision software 
rids a command to the microcontroller to switch to the camera on 
; other side of the vehicle and begin tracking the opposite line, 
ised on a video update rate of at least six frames per second (bad 
lages can often be rejected quickly, resulting in a higher rate), 
id a maximum speed of 8.041an/hr, the vehicle will travel no 
rther than 0.244 m in this time. 

A third innovative feature of CALVTN's design is the use of 
radio controller to generate the same PWM signals as the 
icrcccntroller for the steering and drive motor controllers. This 
lows simple switching between autonomous and manual modes, 
nich greatly facilitates vehicle setup and testing. During normal 
:erauon, all user interaction with CALVIN is through the radio 
:ntroiler or through a single weather-resistant control panel 
ounted on the left rear quarterpanel of the vehicle. This control 
inel is shown in Figure 8 below. While this is again a simple 
ature, it is a clear improvement over the interfaces used by 
nicies in previous competitions, many of which required 
ocward interactions including manual pushing for placement and 
aio. 

Figure 8: The control panel 

A fourth innovative feature of CALVTbi is the separation of 
data processing between the PC and the microcontroller. Since 
data processing speed has historically limited other vehicles 
maximum speeds [Cheok, 1994, Nagy et al., 1995], a system was 
designed to process data in parallel. By processing closed-loop 
velocity and steering control, as well as ultrasonic and tactile 
sensor data on CALVTN's microcontroller, the PC is used solely 
for the computationally intensive vision algorithms. This 
separation of data processing greaüy reduces the total processing 
time, therefore increasing the maximum sustainable vehicle speed. 

VEHICLE COST AND FUNDING SOURCES - The table 
at the end of the paper lists the ready-made components that were 
purchased or donated. Separate columns list both the retail cost 
and the purchase price of the component Note that many items 
were either donated or sold to the project team at a substantially 
reduced cost Also note that all fabricated components, such as 
mounting brackets, sensor housings, framework, bumper and the 
Lexan outer shell, were built by members of the design team in the 
student shop of the Mechanical Engineering Department In 
addition, team members did a great deal of electronic design and 
circuit fabrication. It is estimated that approximately 5000 person 
hours have been invested in this project This includes time spent 
on activities such as project organization, fundraising, publicity, 
and research. 

COMPETITION RESULTS 

The 1996 Unmanned Ground Vehicle competition held at 
Walt Disney World, Epcot Center July 13-15, was composed of 
two sub-competitons. The first was the SAE Design Competition, 
which evaluated the written report, an oral presentation and a static 
viewing for each vehicle. 

The second competition was the obstacle course race.  All 
vehicles were given three attempts at completing the course, and 
the vehicle to complete the course in the shortest amount of time, 
or to proceed the furthest in any one run would be declared the 
winner of this competition. 

Virginia Tech's CALVTN vehicle was declared the winner of 
the SAE Design Competition. Virginia Tech' s other vehicle, 
BOB, scored third place in the SAE Design Competiton.  The 



winner of the obstacle course race was Ohio State University's 
vehicle. Virgina Tech' s obstacle course race results were 13th 
and 6th for CALVIN and BOB respectively. 
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 Part Name and DescriDtion                             1      Pr-ni^t fn« ^      1   D.(niir„.(« 
base Vehicle - Gas Powered E-Z Go golf can (used) 500 500 

Drive Train - 12 VDC 0.764 kw Thermo King Motor Csurnlus) 100 100 
Drive Train ComDonents (belts, pullevs. etc ) 75 75 

Comouter - Pentium 100 Mhz PC 1125 1125 
DSP Frame Grabber (Current Technologies) donated 900 

Motorola 68HC11-based Microcontroller (Coactive Asthetics) 125 250 
Assorted Electronic Components and Cables 150 150 

Polariod Ultrasonic Sensors (six) 350 350 
Linear Actuator - 12 VDC 6" stroke (Motion Svstems) donated 300 

2 Cameras & Lenses (DEI / Professional Security Alliance) 400 1200 
PWM Motor Controllers (VANTEO 450 950 

Aluminum for Frame and other structures (R.J. Reynolds) donated 200 
Barteries (Sears) 150 300 

Air Tank (Steel-Fab) donated 100 
400 W Inverter (Tripp-Lite) donated 100 

Lexan for Outer Shell (Piedmont Plastics) donated 350 
TOTAL 3.425 6.950 

Vehicle Cost Breakdown 

j May 1995 | Aug. 1995 I  Oct. 1995 I Dec. 1995 Jan. 1996 Mar. 1996 May 1996 July 1996 
Autonomous • Golf cart Base vehicle Conceptual Spnng Computer Formation of Inter-team 

Robotic acquired for operational design/frame semester vision and summer competition 
Vehicle base vehicle and prepared modifications teams ultrasonic teams between 
Project for completed organized sensors CALVIN and 

introduction Academic modification tested Systems BOB 
at Virginia year begins. Fail-safe System integration 

Tech large project brake system components Automatic" completed Design paper 
team implemented ordered drive control submitted 

Preliminary organized specified Testing and 
design team Drive and subsequent Departure for 
assembled steering 

systems 
tested 

modification 
begins 

Epcot 7/12 

4th Annual 
UGR 

competition 
in Eocot 

Project Timeline 
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Navigation of an autonomous ground vehicle using the subsumption architecture 
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ABSTRACT 

The subsumption architecture is used to provide an autonomous vehicle with the means to stay within the 
boundaries of a course while avoiding obstacles. A three-layered network has been devised incorporating computer 
vision, ultrasonic ranging, and tactile sensing. The computer vision system operates at the lowest level of the 
network to generate a preliminary vehicle heading based upon detected course boundaries. The network's next 
level performs long-range obstacle detection using an array of ultrasonic sensors. The range map created by these 
sensors is used to augment the preliminary heading. At the highest level, tactile sensors are used for short-range 
obstacle detection and serve as an emergency response to obstacle collisions. The computer vision subsystem is 
implemented on a personal computer, while both ranging systems reside on a microcontroller. Sensor fusion 
within a subsumption framework is also executed on the microcontroller. The resulting outputs of the subsumption 
network are actuator commands to control steering and propulsion motors. The major contribution of this paper is 
as a case study of the application of the subsumption architecture to the design of an autonomous ground vehicle. 

Keywords: control systems, subsumption architecture, sensor fusion, autonomous vehicles, obstacle course 
navigation, computer vision, ultrasonic ranging 

1. INTRODUCTION 

This paper describes the control system design issues encountered by the Virginia Tech Autonomous Vehicle Team 
in its development of two autonomous ground vehicles. These vehicles were built for entry in the Fourth Annual 
International Autonomous Ground Robotics Vehicle Competition, which was sponsored by the Association of 
Unmanned Vehicle Systems International (AUVSI) and was held at the Epcot Center in Orlando, Florida on July 
13-15, 1996. The goal of the competition was to have an unmanned ground vehicle navigate an outdoor obstacle 
course roughly 500 feet long in no more than ten minutes, while obeying a speed limit of five miles per hour. 
White and yellow lane markers were painted on the ground to define the course's boundaries, while hay bales 
served as obstacles g'10, ". 

Successful obstacle course navigation requires the ability to detect course boundaries and obstacles, and then make 
intelligent control decisions. While it would be possible to gather all needed boundary and obstacle information 
using a single sensory device, such as a camera attached to a computer vision system, it is more likely that multiple 
types of sensors would be used. This would allow the vehicle to utilize the abilities of very effective, but highly 
specific, sensory devices. The problem that then arises is that of combining these different sensing modalities into 
a limited number of control signals. This is known as the sensor fusion problem 5-6'13. 

One solution to the sensor fusion problem can be found in the subsumption architecture u 2. This architecture 
decomposes a control problem into a collection of behaviors. Individual behavior modules are developed to process 
sensory data so as to create a simple behavior, such as line following. Multiple modules, each with potentially 
different sensory inputs, are then developed to produce additional behaviors. Through the use of a hierarchy, 
outputs of some modules are allowed to subsume the outputs of other modules, thus creating a single actuator 
command from multiple sensory inputs. 

The focus of this paper is the use of the subsumption architecture to perform sensor fusion for the control of 
autonomous ground vehicles. General design issues for autonomous navigation of an obstacle course are first 
discussed, with an emphasis on sensor fusion. A brief summary of the subsumption architecture is then given, with 
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a description of the implementation of the subsumption architecture on two different vehicles. A discussion of 
future areas of work is also included. 

2. AUTONOMOUS NAVIGATION ISSUES 

2.1 Information needed tor obstacle course navigation 

Many issues are involved in designing an autonomous vehicle to navigate an obstacle course of the type established 
by the AUVSI for the vehicle competition. These issues can be divided into various functions, such as gathering all 
necessary sensor data, processing sensor data, and applying control signals to the vehicle's actuators, or they can 
be divided into various behaviors, such as path following and obstacle avoidance g'l0, ". 

No matter how the issues are divided, the vehicle must be able to detect the course's boundaries and the multiple 
obstacles it may encounter. How the boundaries are defined and what one wishes the vehicle to do with boundary 
information dictate which technologies are candidates for boundary detection. Computer vision can detect 
boundary lines both near and far, providing the vehicle with information about its present location and its possible 
future locations. An infrared emitter/detector pair can also be used for boundary detection. This method relies on 
the reflection of an emitted signal and thus the emitter/detector must be in close proximity to the line. Using this 
method, it would be very difficult to get any knowledge about where the vehicle should go in the distant future. 

The vehicle must also be able to detect obstacles. Ideally, proper detection should allow obstacles to be avoided 
altogether. Detecting obstacles from a longer distance is beneficial, as more time is available to take evasive 
action. Computer vision systems can be used to detect the location of obstacles at significant distances, but 
extensive image processing may be required for both obstacle recognition and distance calculations to the identified 
obstacle. A simpler approach is to use soundwaves from ultrasonic transducers to locate obstacles. These sensors 
have nice distance detection capabilities, but because they tend to have limited fields of view, an array of ultrasonic 
sensors is usually needed to provide sufficient coverage 4,5<'' ". 

In the 1996 competition, collisions with an obstacle were acceptable, but moving an obstacle was not. Tactile 
sensors can be used to provide information about collisions. As with the ultrasonic sensors, an array of tactile 
sensors should be used to determine where on the vehicle the collision occurred. This allows corrective measures 
to be taken to avoid hitting the obstacle a second time. 

2.2 Sensor fusion 

Autonomous navigation most likely will involve gathering and processing data from a variety of sensor types. In 
the previous section, computer vision, infrared emitter/detector pairs, and ultrasonic and tactile sensors were 
discussed in relation to detecting boundary lines and obstacles in the context of obstacle course navigation. In 
general, laser rangefinders, inclinometers, photosensitive resistors. Global Positioning Systems (GPSs), and many 
more devices may be used to provide information to a vehicle. Combining all of this information in an intelligent 
and organized fashion is called sensor fusion. 

It is conceivable that sensor fusion could be avoided altogether in obstacle course navigation by using only 
computer vision. However, there are numerous disadvantages to this approach: 

• Computer vision is not trivial, as complex image processing can be computationally intensive 
• Other sensing technologies may be better at performing a few specific tasks, such as tactile sensors for obstacle 

collision detection 
• Diverse and unpredictable lighting conditions diminish the reliability of a computer vision system 
• In general, using a single sensing modality provides a single point of failure 

A system capable of performing sensor fusion addresses all of the points listed above. Perhaps the biggest 
advantage of such a system is that sensor multiplicity can provide redundancy. Sensor uncertainty and error will 



exist in autonomous vehicle navigation 4' 5' s' n' '2. Redundancy helps to lessen the harmful effects of sensor 
uncertainty and error. 

Another advantage of sensor fusion is its inherent degree of modularity. Creating a system that is modular has 
many benefits in both the initial design stage and later refinements. Ideally, as more sensor information becomes 
available, this information should be able to fuse with existing data easily, without requiring large changes to 
current software and hardware. Sensor fusion techniques are based on this ability to combine multiple modules 
into a single system. 

2.3 Reactive systems versus planning systems 

The actions of an autonomous vehicle can be the result of two general types of control structures: reactive or 
planning. Both of these control structures use sensory information to determine actions. A planning control 
strategy assumes that the vehicle has a world model on which to base all of its actions. Information is sensed, 
processed based on the world model, and then an action is generated. The world model may be known a priori, or 
alternatively, may be developed from information gathered by the vehicle's sensory inputs. A reactive system 
differs in that it uses no world models and its sensory inputs are subjected to minimal processing before generating 
outputs, leading to a quick response from a given stimulus. 

In most cases of autonomous navigation, a detailed world model will not be known a priori. If a planning system 
is to be used, a model of the world must be built from sensory inputs. Unfortunately, sensory systems can typically 
only provide a partial picture of the environment 4'6. Sensory information gathered is also inherently noisy, as 
sensors may not be operating at all times under ideal conditions. This can lead to inaccurate world models and 
poor performance in a planning system. 

Reactive, or behavior-based, systems do not require the development of a world model and are relatively simple 
compared to planning systems. Participants in previous competitions have proposed using reactive systems due in 
part to the relative simplicity of such designs 10, ". The behavior-based approach is also ideally suited to obstacle 
course navigation, as the task can be decomposed into distinct behaviors such as path following, line following, 
obstacle avoidance, etc. 

3. SUBSUMPTION ARCHITECTURE OVERVIEW 

The subsumption architecture is a behavior-based control scheme developed for controlling autonomous mobile 
robots '•". Control of an autonomous mobile robot will inevitably involve multiple goals, some of which may 
require conflicting actuator demands. Any successful architecture must have a means of arbitrating these 
conflicting demands. The subsumption architecture does this by taking a behavior-based approach to decomposing 
the entire control problem. 

A typical approach, as shown in Figure 3.1, is to break down the problem into a series of functional units, where 
each unit performs a specific function. For an autonomous vehicle to navigate an obstacle course, these functions 
may include gathering sensor data, processing sensor data, making logical steering and drive decisions, and 
applying control commands to steering and drive actuators. There are, however, multiple disadvantages to this 
type of architecture: 

• The details of every module must be considered before the construction of any individual module can proceed. 
• Module interfaces are extremely important because of the module-to-module flow of information. 
• A problem in one module can lead to a cascade failure in other modules that depend on the output of the 

damaged module. 

The subsumption architecture takes an alternate approach by decomposing the problem into parallel, task- 
achieving behaviors, as shown in Figure 3.2. Individual behaviors are generated from modules, each of which is a 
simple, asynchronous computational machine.  An entire control system is then constructed using layers of these 



behavior modules. The vehicle achieves a certain level of competence for each layer in its control system. As more 
modules are added, the overall level of competence of the vehicle increases. Higher layers produce more specific 
desired behaviors and can subsume lower layers by suppressing the lower layers' outputs. For autonomous obstacle 
course navigation, these behaviors may include path following, obstacle avoidance, and reaction to obstacle 
collisions. This style of architecture addresses all of the problems associated with the series architecture of Figure 
3.1: modules are constructed individually, module interfacing is not elaborate, and failures in one module have a 
minimal affect on other modules. 
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Figure 3.1 A series of functional modules for obstacle course navigation 
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Figure 3.2 Parallel behavior modules for obstacle course navigation 

The subsumption architecture essentially involves fixed priority assignments between behaviors. The commands 
belonging to the highest priority behavior are applied to the robot's actuators. The designer of such a system must 
decide on the number of behavior levels and what priority to assign to each level. The ordering of the modules in 
Figure 3.2 shows one possible behavior decomposition and hierarchy for the obstacle course navigation problem. 

4. VEHICLE DESIGNS 

Past competitors have designed vehicles using computer vision to detect the course's boundaries and ultrasonic 
sensors to detect the hay bale obstacles '■ 10' ll. The Virginia Tech Autonomous Vehicle Team used a similar 
approach in designing two vehicles, BOB (Beast of Burden) and CALVTN (Computerized Autonomous Land 
Vehicle with Intelligent Navigation). 

Figure 4.1 provides an overhead view of the two vehicles, showing their relative sizes and the positions of the 
cameras and ultrasonic sensors. BOB used a personal computer with a frame grabber card to interface with a 
single camera, which was positioned near the middle of the vehicle and directed forward. CALVIN was equipped 
with two cameras, each looking directly out to opposite sides of the vehicle. These cameras were positioned near 
the front of the vehicle. An electronic video switch was used to connect either one of these two cameras to a frame 
grabber card in a personal computer. Both vehicles used a Motorola 68HCll-based microcontroller to interface to 
an array of five ultrasonic sensors and to three tactile sensor banks. The positions of the ultrasonic sensors were 
different for each vehicle due to the different vehicle widths and the different bumpers on each vehicle. The three 
tactile sensor banks were connected to the three segments of the front bumpers on each vehicle. 
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Figure 4.1 Top view showing relative sizes and configurations of the two vehicles 

Figure 4.2 shows a block diagram of the control systems for the Virginia Tech autonomous vehicles. Three 
different sensing modalities were combined into reference signals using the subsumption architecture to control a 
steering motor and a drive motor. Sensor fusion is inherent in the subsumption architecture, svhere outputs 
resulting from one sensor can be subsumed by outputs resulting from another sensor. A previous competitor 9 has 
stated that obstacle course navigation is ideally suited to subsumption architecture because the task can be broken 
down into behaviors such as stay within the lines, follow a specific line, and avoid obstacles. 

Figure 4.3 shows the sensor fusion block of Figure 4.2. The bottom layer was the Path Following module, which 
used computer vision to create a path following behavior. The middle layer was the Obstacle Avoidance module, 
which used ultrasonic sensors to avoid obstacles. At the highest level was the Emergency Obstacle Avoidance 
module, where tactile sensors were used to trigger an emergency response if an obstacle was hit. 
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Figure 4.2 Autonomous vehicle control system 
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Figure 4.3 Subsumption architecture approach to sensor fusion 



Sensor fusion was accomplished on the microcontroller. The Path Following module was realized on the personal 
computer, with its output sent to the microcontroller via a serial connection. The Obstacle Avoidance and 
Emergency Obstacle Avoidance modules operated solely on the microcontroller. Software on the microcontroller 
allowed the middle layer to subsume the lowest layer. The interrupt capabilities inherent in the hardware of the 
microcontroller were used to allow the highest layer to subsume the two lower layers' outputs. The next three 
subsections of this chapter provide additional details about each behavior module. 

Figures 4.4 and 4.5 show schematic diagrams of the integration of the personal computer and microcontroller with 
the sensors and controllers for the two vehicles. BOB's drive motor controller performed closed-loop velocity 
control, eliminating the need for any velocity feedback to the microcontroller in Figure 4.5. 
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Figure 4.4 Computer integration of sensing and control for CALVIN 
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Figure 4.5 Computer integration of sensing and control for BOB 

4.1 Boundary detection through computer vision: Path Following module 

On both vehicles, the input to this module was a camera image and the output was a preliminary steering angle for 
keeping the vehicle within the boundaries of the course. The internal operations of this module, however, were 
significantly different between vehicles because each used a different camera configuration. 

On BOB, there was just a single camera directed straight ahead. Since one would expect boundary lines to extend 
up the image plane, a weighted sum of pixels in each column was taken, with the goal being to find two modes in 



this column data. These modes, representing an estimate of the boundary locations, were used to create a 
preliminary steering angle that moved the vehicle toward the horizontal average of the two modes. The horizontal 
average approximated the center of the course. 

On CALVIN, two cameras were used, each directed outward at a right angle to the vehicle's forward direction. 
One would expect boundary lines to appear as horizontal lines at a certain vertical position in these images. If the 
detected line was not horizontal, CALVIN was not parallel to the boundary line. Similarly, if the line was 
horizontal but not at the correct vertical position, then CALVIN was either too close or too far away from the 
boundary. A steering angle was chosen to properly orient the vehicle based upon the angle and vertical location of 
the detected line. If consecutive images were bad from one camera, a signal was sent to the microcontroller to have 
it switch cameras, providing a degree of redundancy. 

4.2 Obstacle detection through ultrasonic sensors: Obstacle Avoidance module 

On both vehicles, five ultrasonic sensors located in the front of the vehicle were used to gathered distance data to 
the obstacles. A collection of IF-THEN rules was used to analyze the distance values returned by the sensors. 
These rules determined the steering angle needed to avoid any obstacles in the vehicle's path. On BOB, the output 
of this module was a steering angle that absolutely replaced (subsumed) the preliminary heading from the Path 
Following module. On CALVIN, the output was either an absolute steering angle or a "steering delta" that was 
added to the preliminary heading from the Path Following module. The resulting sum would then be the final 
steering angle. This part of the sensor fusion was handled in software by the microcontroller. 

4.3 Obstacle detection through tactile sensors: Emergency Obstacle Avoidance module 

Tactile sensors placed on the front bumpers of both vehicles provided obstacle collision detection. Using input 
capture pins on the microcontroller, interrupt service routines (ISRs) were executed in response to a signal from 
any of three banks of wired-OR tactile sensors. These ISRs effectively subsumed the outputs of the Path Following 
;ind Obstacle Avoidance modules by forcing the vehicle to execute a "backing up" maneuver. This part of the 
sensor fusion was handled easily because of the ISR capabilities associated with the input capture pins of the 
microcontroller. 

4.4 Summary of the vehicles' performance 

The subsumption architecture proved to be a good method for achieving sensor fusion. The inherent modularity of 
this architecture made it an ideal choice for Virginia Tech's initial experiences in developing autonomous ground 
vehicles. The various behavior modules were developed, tested, and refined independently, greatly reducing the 
effort required to fully integrated all sensor systems of the autonomous vehicles. At the competition in July, BOB 
;ind CALVIN placed 6th and 12th, respectively, out of 17 participants. 

The biggest problems encountered in performance trials were presented by shadows and glare from the sun. The 
computer vision system on each vehicle had difficulty extracting the boundary lines from a captured image when 
these artifacts were present. In both circumstances, the image preprocessing required could not sufficiently remove 
the artifact while tracking the boundary lines. Both vehicles performed well when the sun was not shining 
brightly. In this respect, the subsumption architecture was shown to work when the Path Following module could 
successfully preprocess the captured images. This also emphasizes the importance of the bottom layer in a 
subsumption architecture. This behavior should be the result of a very robust and fully operational module. 

5. FUTURE WORK 

The control systems on the vehicles performed well, but modifications are already being considered to improve the 
overall performance of the vehicles. Future work will focus on three areas: 1) refining the three individual 
modules of the subsumption network shown in Figure 4.3, 2) modifying the sensor inputs to these modules, and 3) 
adding additional modules to the network. 



5.1 Modifications within current modules 

Within the Path Following module, modifications have been proposed to use more sophisticated computer vision 
algorithms for line detection. The use of artificial neural networks (ANNs) for pattern recognition is one option 
being explored. ANNs have the ability to extract underlying geometric shapes from a noisy image, providing a 
degree of disturbance rejection that could counter the harmful effects of shadows and sun glare. Gathering training 
data that is truly representative of the numerous lighting conditions that may be encountered in competition could 
pose a problem for this approach. 

The collection of IF-THEN rules used within the Obstacle Avoidance module could also be modified. Rather than 
using a large collection of crisp rules, a fuzzy rule-base has been proposed. The output of this system would still be 
a steering delta or an absolute steering angle, but only a small number of fuzzy rules would be used. From this 
small fuzzy system, a wide variety of responses would be generated. The possibility also exists to train a system to 
learn a set of fuzzy rules that can most effectively handle the situations encountered in obstacle course navigation. 

5.2 Sensory device modifications 

Alternate sensory devices for the behavior modules of Figure 4.3 are also being considered. The use of a color 
camera to provide the input to the Path Following module is being considered to address the problems associated 
with sun glare. Grass without any paint was seen to reflect sunlight as much as blades of grass that had been 
painted white (or similarly covered with lime powder). With a color camera, the intense green reflections could be 
filtered out while leaving the intense white reflections from the lines. 

5.3 Additional modules 

Line detection in an outdoor setting using computer vision is not a trivial task. It proved to be the system 
component most prone to failure in testing and performance trials. Therefore, the addition of a second module for 
boundary detection is planned. The detector used with this module would function at short range and would serve 
as an indication that the vehicle is very close to a course boundary. The position of the Emergency Path Following 
module in Figure 5.1 shows the relative priority of the behavior generated from this module. 
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Figure 5.1 Subsumption architecture with additional module providing redundant line detection 

6. ACKNOWLEDGMENTS 

This paper describes the authors' efforts as members of the Virginia Tech Autonomous Vehicle Team. This team 
consisted of students and faculty advisors from the Mechanical and Electrical Engineering Departments, as well as 



the Computer Science Department. In all, over 50 students participated in Virginia Tech's inaugural entry in the 
autonomous vehicle competition. The authors wish to acknowledge the efforts of everyone associated with this 
project. For further information, please see the Virginia Tech Autonomous Vehicle Team's home page at 
http://fbox.vt.edu: 10021/org/ANRobotics/robotics.html. Information about AUVSI. the competition's sponsor, can 
be found at http://avdil.gtri.gatech.edu/AUVS/index.html. 

7. REFERENCES 

[I] Brooks, R. A.. "A Robot that Walks: Emergent Behaviors from a Carefully Evolved Network," IEEE 
International Conference on Robotics and Automation, Scottsdale, AZ, May 1989, pp. 692-696. 

[2] Brooks. R. A., "A Robust Layered Control System for a Mobile Robot," IEEE Journal of Robotics and 
Automation, vol. RA-2, no. I. March 1986. pp. 14-23. 

[3] Gasparetto, A.,  Rossi, A., Robb, I.  A., "Control System Design and Dynamic Simulation of an 
Autonomous Vehicle for Factory Automation," Proceedings of the 20th International Conference on 
Industrial Electronics, Control, and Instrumentation. Bologna, Italy, September 1994, pp. 1111-1116. 

[4]        Gourley, C, Trivedi. M., "Sensor Based Obstacle Avoidance and Mapping for Fast Mobile Robots," IEEE 
International Conference on Robotics and Automation, San Diego, CA, May 1994, pp. 1306-1311. 

[5] Kang, D., et. al., "Position Estimation for Mobile Robot Using Sensor Fusion," Proceedings of the 1994 
International Conference on Multisensor Fusion and Integration for Intelligent Systems. Las Vegas, NV, 
October 1994, pp. 647-652. 

[6j Luo, R. C, Kay, M. G., Lee, W. G., "Future Trends in Multisensor Integration and Fusion," 1994 IEEE 
International Symposium on Industrial Electronics, Santiago, Chile, May 1994, pp. 7-12. 

[7] Langer, D., Rosenblatt, J.K., Hebert, M., "An Integrated System for Autonomous Off-Road Navigation," 
IEEE International Conference on Robotics and Automation, San Diego, CA, May 1994, pp. 414-419. 

[8] Lindner, J., Murphy, R. R., Nitz, E., "Learning the Expected Utility of Sensors and Algorithms," 
Proceedings of the 1994 International Conference on Multisensor Fusion and Integration for Intelligent 
Systems, Las Vegas, NV, October 1994, pp. 583-590. 

[9] Matthews, B., et. al., "Development of a Mobile Robot for the 1995 AUVS Competition," Mobile Robots 
X. SPIE 2591, Philadelphia, PA. October 1995, pp. 194-201. 

[10]       Murphy, R. R.. "An Artificial Intelligence Approach to the 1994 AUVS Unmanned Ground Robotics 
Competition," IEEE International Conference on Systems. Man, and Cybernetics, Vancouver, B.C., 
October 1995, pp. 1723-1728. 

[II] Murphy, R. R., et. al., "Colorado School of Mines Behavioral Approach to the 1995 UGR Competition," 
Mobile Robots X, SPIE 2591, Philadelphia. PA, October 1995, pp. 220-227. 

[12] Niizuma, M., et. al., "Action-oriented sensor data integration and its application to control of an 
autonomous vehicle," Proceedings of the 1994 International Conference on Multisensor Fusion and 
Integration for Intelligent Systems, Las Vegas, NV, October 1994, pp. 175-182. 

[13]        Rich. E., Knight. K.. Artificial Intelligence, McGraw-Hill. Inc., New York, 1991. 
[14] Yagi, Y., Okumura, H., Yachida, M., "Multiple Visual Sensing System for Mobile Robot," IEEE 

International Conference on Robotics and Automation. San Diego, CA, May 1994, pp. 1679-1684. 



The Distributed Learning Classifier System 

Doug G. Gaff 
Spatial Positioning Systems, Inc. 

1700 Kraft Drive, Suite 1200 
Blacksburg, Virginia 24060 

dgaff@vt.edu 

John S. Bay 
Virginia Polytechnic Institute and State University 

Department of Electrical Engineering, 340 Whittemore Hall 
B lacksburg, Virginia 24061-0111 

bay@vt.edu 

Keywords 

Distributed Systems, Network Communication, Learning 
Classifier Systems, Distributed Artificial Intelligence, 

Robotics 

Abstract 

In this paper, we present a new distributed artificial 
intelligence (DAI) architecture we call the Distributed 
Learning Classifier System (DLCS). The DLCS is an 
extension of the learning classifier system (LCS), with 
specific architecture additions for network message passing. 
In order to illustrate the effectiveness of the DLCS paradigm 
in multiple-agent scenarios, we provide a solution to the 
multiple-agent animat problem using the DLCS. 

I. Introduction 

The term "machine learning" is used to describe a 
vast array of algorithms, methods, and paradigms which 
anempt to solve tasks that run the gamut from speech 
recognition to financial analysis to robot control. Machine 
learning paradigms tend to fall into one of three categories: 
neural modeling, symbolic concept acquisition, or domain- 
specific learning [1]. The neuron-like networks present in 
neural modeling techniques provide fast, relatively simple 
mappings from input to output. Symbolic concept 
acquisition encompasses a broad range of artificial 
intelligence methods in which a machine solves a task by 
learning previously unconnected concepts using a 
predefined symbolic notation. Domain-specific learning 
involves a large amount of a priori knowledge about the 
task, and these algorithms focus on using an extensive 
knowledge-base to solve the problem [2]. In attempting to 
solve a particular task, one would often prefer an approach 
that provides a compromise between these three techniques. 
The Learning Classifier System (LCS), proposed by John 
Holland [3,4], provides such a compromise. 

The LCS is a rule-based, message-passing, machine 
learning paradigm designed to process task-environment 
stimuli, much like the input-to-output mapping provided by 
a neural network. In addition to neural-like mapping, the 
LCS provides learning through genetic and evolutionary 
adaptation to changing task environments. LCS concepts 
are "subsymbolic," meaning that they are encoded by the 
system itself and not the designer. The LCS can still be 
programmed with specific domain knowledge, however, and 
this duality provides much design flexibility [5]. 

The purpose of this paper is to introduce the 
Distributed Learning Classifier System (DLCS) architecture 
as a method for using the LCS in a multiple-agent setting. 
As an extension of the traditional learning classifier system, 
the DLCS provides a set of rules for interfacing to a 
standard network so that multiple LCS agents can work 
collectively, while still executing individually. Collective 
task solution is at the heart of distributed artificial 
intelligence (DAI) research [6]. However, the DLCS differs 
from other DAI architectures in that it requires no central 
control, and is therefore more suited for tasks involving 
multiple, autonomous agents. Also, since the DLCS uses a 
network-like message-passing scheme, standard network 
protocols can be used to connect agents. We begin our 
discussion by providing a very brief overview of the 
traditional learning classifier system and the current research 
in the area. We then present a detailed discussion of the 
DLCS and illustrate its application to a multiple-agent 
problem. 

n. Background 

The learning classifier system consists of a list of 
rules or classifiers that provide a set of possible actions for a 
given problem scenario. Each rule has one or more 
condition words and an action word. The system operates 
by reading messages from a task environment interface, 
comparing those messages to the conditions of the rules in 

Ta-    npyzt+r^-      1^ XAS7E} Coif.    **,   PO*AS(/-4    V   7)c4>h.    Ctn^fuJ-u Sy^/f^o^f 



the classifier list, and posting the corresponding action 
messages back to the task environment. This sequence of 
operations is referred to as an execution cycle and is 
repeated until a particular environment state is reached. 
Messages from and to the environment are stored on a 
message board. Since the message board is of finite length, 
rules are probabilistically selected using a bidding process 
based on a figure of merit called strength. Each rule has a 
strength assigned to it, and rules whose conditions match the 
environment messages are given a bid value based on this 
strength. Rule strengths are adjusted by the task 
environment payoff function based on the appropriateness of 
the rule to solving the task at hand. Rule strengths are also 
adjusted by the Bucket Brigade Algorithm (BBA), an 
algorithm designed to encourage rule chaining. Rule chains 
form when an action message from the previous iteration of 
the execution cycle causes an action to get selected on the 
current iteration. In order to provide a method for exploring 
new rules, the rules in the classifier list are periodically 
modified by a genetic algorithm (GA) which employs the 
reproduction and mutation genetic operators. The 
combination of the GA (rule discovery) and rule strength 
adjustment (credit assignment) enable the LCS to learn new 
concepts. Credit assignment and rule discovery are 
performed after actions are posted to the environment For a 
more detailed discussion of the LCS, see [3] and [4]. 

Holland began development of the LCS in 1971 
[7]. Since then it has undergone modest experimentation. 
Some of the more recent work includes the application of 
the LCS to letter sequence prediction by Robertson and 
Rioio [8], multiplexer truth function learning by Wilson [9], 
predictive behavior learning by Carse [10], environment 
variable storage by Shu and Schaeffer [11], and learning by 
analogy by Zhou and Grefensterte [12]. Each of these tasks 
focused on the use of a single LCS. Dorigo and Schnepf, on 
the other hand, explored the use of multiple learning 
classifier systems in robotics, with each system controlling a 
different aspect of the robot. While they show that this 
control approach is effective, their setup does not explicitly 
pass messages between classifier systems [13]. The DLCS 
presented here goes beyond current learning classifier 
system research by introducing true networking into the LCS 
framework. 

m. The DLCS 

A. Overview 

The DLCS extends the standard learning classifier 
system with the addition of a network interface, as shown in 
Figure 1. The figure indicates message flow with solid 
arrows and system control with dashed arrows. The 
execution cycle operates by reading messages from the 
environment through the input interface, selecting 
appropriate actions from the classifier list, and posting 
actions back to the environment via the output interface. 
With the DLCS, however, we extend this message passing to 

the network. Now, messages can come from the input 
interface and the network interface and actions can get 
posted to the output interface and to the network. The 
network can also introduce new rules into the classifier list. 
We describe in detail these two cases, as well as a third 
message-passing case, in the next two sections. Since 
networks are asynchronous and tend to have a delivery delay 
that depends on external factors such as network congestion, 
available bandwidth, and transmission rate, the network 
interface contains transmit and receive queues for the 
purpose of buffering network messages so that the LCS does 
not have to wait for network response to continue execution. 
These queues are simply FIFO buffers which store outgoing 
and incoming messages. 
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Figure 1. The DLCS 

B. Network Message Types 

In order to provide versatile and effective 
communication over the network, the DLCS paradigm 
provides three types of messages that can be passed over the 
network: classifier messages, action messages, and BBA 
strength adjustment messages. Classifier message passing 
occurs when an agent finds a useful rule and shares this rule 
with the other agents. Action message passing occurs when 
an agent periodically sends one or more of its selected 
actions to other agents in the network. Finally, since agents 
are passing action messages back and forth, rule chains can 
form between agents, and BBA strength adjustment 
messages must be sent between them. 

Each type of message-passing has different 
implications for the DLCS. Classifier message passing 
allows one agent to share its learned knowledge with others. 
As will be shown in the next section, only classifiers with 
higher strengths can be passed, thereby ensuring that only 
"good" rules are shared between agents. Therefore, if one 
agent has learned part of a task more quickly than its fellow 
agents, that agent will share this learned information and 
help accelerate the learning process in the other agents. 



Action message passing, on the other hand, provides a 
method for one agent to directly "talk" to the others. These 
received network action messages combined with 
environment interface messages work together to "fire" rules 
in the classifier list. The BBA payoff messages perform the 
same function as in the single-LCS case by encouraging 
chains to form between agents, thereby encouraging 
"discussion" among agents. 

C. DLCS Execution Cycle 

The following is the execution cycle for the 
distributed learning classifier system. The execution cycle is 
based on the standard LCS cycle, with items in italics 
representing DLCS additions. 

1. From the input interface, read the messages from the 
environment and post them on the message board. 
From the receive queue, read the action messages from 
other agents and post them on the message board. Also 
read the classifier messages from other agents and 
probabilistically replace weak rules in the classifier list 
with these new rules. 

2. Compare the messages on the message board with each 
classifier. Record a match for every classifier whose 
condition words have all been matched by these 
messages. 

3. Calculate bids for each matching classifier. 
Probabilistically select classifiers to post. 

4. Clear the message board and post the actions of the 
selected classifiers. 

5. Send the messages on the message board to the output 
interface. Send a subset of these messages and/or a 
fixed number of high-strength classifiers to the transmit 
queue. 

6. Adjust the strengths of classifiers. Extract and process 
any BBA strength adjustment messages from the receive 
queue, and send BBA payoff messages to the transmit 
queue as necessary. 

Steps 1 and 5 of this execution cycle are responsible for 
reception and transmission of classifier and action network 
messages, respectively. We must establish rules for 
transmission and reception so that the number of messages 
sent over the network can be controlled and so that one can 
control the amount of influence agents have upon one 
another. We will discuss transmission first. 

Transmission of action and classifier messages 
occurs on step 5 of the execution cycle. We state above that 
a "subset" of the selected actions should be sent. This 
subset is defined by two variables, the transmit bid 
threshold, BJX , and the maximum number of actions to 
transmit, N-ncaaio* The transmit bid threshold defines the 
minimum bid value required before an action is eligible to 
be sent over the network. By imposing a bid threshold, only 
those actions whose posting classifiers have a high strength 
will be sent, since the bid is based on the strength. Nrx.aaion 

provides a way to control the amount of network traffic by 
imposing an upper limit on the number of actions that can be 
sent, in case all of the actions have large bids. If NTXM.™ is 
smaller than the number of actions eligible to be transmitted, 
then the actions with the largest bids are sent. 

Transmission of classifiers on step 5 is also 
governed by two variables, the transmit strength threshold, 
STX I and the maximum number of classifiers to transmit, 
^vccivzifier- The transmit strength threshold functions like 
the bid threshold in dictating a minimum strength required 
before a classifier can be transmitted. This threshold 
ensures that only "good" rules are sent over the network. 
N-rxxiassifier also helps control the amount of network traffic 
by limiting the number of classifiers that can be sent, since 
classifier lists are often rather large. These variables 
collectively influence the degree of coupling in the multi- 
agent application. Coupling should be "tight" enough that 
collective behaviors emerge, but no so tight that network 
bandwidth is threatened. 

We should point out at this point that action and 
classifier messages are broadcast over the network to all 
other agents. As will be shown, each agent has the 
opportunity to discard received messages. Also. 
transmission of these two message types is globally paced by 
two time intervals: an action transmission interval, locum 
and a classifier transmission interval Tciawfitr- If we define a 
unit of time as one iteration of the execution cycle, these 
intervals determine how many iterations occur between 
network transmissions. Larger intervals provide less inter- 
agent communication and therefore result in less coupling 
between agents. Smaller intervals provide more coupling. 

Reception of action and classifier messages occurs 
on step 1 of the execution cycle. Since both action and 
classifier messages are broadcast, there will in general be 
more messages in the receive queue than were transmitted. 
Agents must have a method of filtering out the best 
messages from all those received. As with transmission, 
action and classifier message types are handled separately. 

Action message reception is governed by two 
variables that are effectively the converse of the 
transmission variables, the receive bid threshold, BRX , and 
the maximum number of actions to receive, Ngx.amm. These 
variables are separate from their corresponding transmit 
variables because we may wish to put more stringent 
requirements on reception than transmission, since reception 
will have an impact on an agent's behavior. In other words, 
an agent can be more liberal in its sharing of information, 
while putting a higher premium on the usefulness of 
received information. To achieve this end, one generally 
uses BRX > BJX and A/at*™,. < Nixaaum • Note that those 
received action messages that are not used are discarded. 

Classifier message reception is also controlled by 
two variables, the receive strength threshold, SRX . and the 



maximum number of classifiers to receive, Nüx.ciassifitr ■ 
These variables perform the same function as in action 
message reception. Again, we want the reception 
requirements to be more stringent because each rule that an 
agent accepts will replace a weaker rule in the classifier list. 
The more network-based rules accepted, the more agent 
rules replaced. While rule replacement is not a necessarily a 
detrimental occurrence, we want to ensure that only "bad" 
rules are replaced. Again, unused classifier messages are 
discarded. Note that there are no receive intervals for action 
or classifier reception since the frequency of reception is 
dependent on the frequency of transmission. 

There are no restrictions on BBA payoff message 
transmission and reception, since this message passing is 
governed by the bucket brigade algorithm. The BBA 
dictates that supplier classifiers should be paid if they post 
an action message that fires one of the current classifiers. If 
these suppliers happen to be in another agent's classifier list, 
a BBA payoff message is sent over the network to that 
classifier. Note that in the BBA payoff message case, 
messages are not broadcast; they are sent directly to the 
agent getting paid. BBA transactions occur on execution 
cycle step 6. 

Finally, depending on the task to which the DLCS 
paradigm is applied, one may wish to disable action passing 
or classifier passing. The DLCS has been designed so that 
action and classifier passing work independently, and 
therefore disabling one does not change the operation of the 
other. Also, disabling the bucket brigade algorithm disables 
BBA message passing. 

IV. Multiple-Agent DLCS Example 

As an example of the DLCS, we introduce the 
multiple-agent animat problem. An animat, or "artificial 
animal," is an extremely simple autonomous robot modeled 
after an animal [9]. The "animat problem" describes the 
autonomous robot's search for a goal in an obstacle-filled 
environment. We extend this animat problem to include 
multiple autonomous robots, each attempting to reach the 
same goal. We will show that the DLCS paradigm allows 
these animats to reach the goal faster and more efficiently 
than animats with standard LCS controllers. 

We model a simple autonomous agent as a treaded 
robot subject to the nonholonomic constraint—the robot's 
velocity is limited by its position, thereby requiring that the 
robot travel only in the direction in which it is pointed. The 
robot is equipped with left and right goal and obstacle 
sensors, with the goal sensors having a much larger range 
than the obstacle sensors. However, the robot does not 
understand its sensor or kinematic systems; it must learn 
relationships between sensors and motion from credit 
assignment. Credit assignment is accomplished by 
evaluating an agent's action on each time step. The agent is 
rewarded for moving closer to the goal and being more 

directly pointed at the goal. The agent is penalized for 
moving away and "looking away" from a goal and for 
crashing into an obstacle. The environment consists of an 
infinite plane with two long obstacles and a goal. The 
agents start behind both obstacles, such that the obstacles 
obstruct the most direct path to the goal. 

The purpose of this simulation is to illustrate the 
effect of LCS network distribution. Therefore, we have 
disabled the Genetic Algorithm and the BBA in the standard 
LCS. For our DLCS settings, we use classifier message 
passing only, with STX = SRX = 80% of the maximum strength 
on the classifier list at the time of transmission and 
reception, respectively. N-n:.classiflir = jVKaui^r = 1 and 
Tciassificr = 1. We use two agents in the animat scenario, and 
each agent's classifier list is initialized with random rules. 
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Figure 2. Simulation results comparing the DLCS with 
the standard LCS. 



We have included the results of two simulations in       [8] 
Figure 2. In the first, the DLCS architecture is used for each 
agent.     In  the  second,  agents  use  the  standard  LCS 
architecture.   In each case, the agents' classifier lists are       [9] 
initialized to the same identical set of random rules. As can 
be seen from the figure, the agents are much more successful 
in maneuvering around the obstacles and reaching the goal       [10] 
when using the DLCS paradigm than when they are given 
traditional     LCS     controllers     with     no     inter-agent 
communication.  Because classifier passing occurs on every 
iteration of each agent's execution cycle, agents' classifier      [11] 
lists tend to quickly converge to the most useful rule, in this 
case, a rule  which moves the  agents toward the goal. 
Without the DLCS architecture, agents are left to "fend for 
themselves," and their successfulness suffers accordingly. [12] 

V, Conclusion 

While there are many facets of the standard [13] 
learning classifier system that have yet to be fully explained, 
the LCS has proven to be useful in several areas of machine 
learning. To fully take advantage of some of the inherent 
characteristics of the LCS, we have introduced its 
distributed sibling, the DLCS. With the additions to the 
learning classifier system described in this paper, the DLCS 
can function as a paradigm for inter-agent communication 
and cooperation. We feel that the DLCS can be an effective 
tool in agent organization and coordination and can be 
useful over a wide range of distributed artificial intelligence 
tasks. 
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Abstract 

A distributed reinforcement learning system is designed 
and implemented on a mobile robot for the study of 
complex task decomposition and dynamic policy 
merging in real robot learning environments. The 
Distributed Q-learning Classifier System (DQLCS) is 
evolved from the standard LCS proposed by J.H. 
Holland. We address two of the limitations of the LCS 
through the use of Q-learning as the apportionment of 
credit component and a distributed learning 
architecture to facilitate complex task decomposition. 
The Q-learning update equation is derived and its 
advantages over the complex bucket brigade algorithm 
(BBA) are discussed. Holistic and monolithic shaping 
approaches are used to distribute reward among the 
learning modules of the DQLCS and allow dynamic 
policy merging in a variety of real robot learning 
experiments. 

1. Introduction 

Recently, considerable interest has arisen in robot 
learning. The general theme in robot learning is that an 
intelligent machine is one that can sense its environment, 
learn how to cause change in its environment to achieve 
a goal, form plans to cany out tasks, and react to 
unpredicted external stimuli. In unsupervised learning 
the robot is given the ability to explore its environment in 
a trial-and-error fashion to collect data. From an 
evaluation of this data, the robot must learn a mapping 
from its input sensor values to its output effector actions. 
Reinforcement learning involves the use of feedback to 
reason about the quality of the robot's condition-action 
rules. 

We have selected one unsupervised reinforcement 
learning algorithm, Holland's Learning Classifier System 
(LCS) [3,6,7], for study and implementation. The LCS is 
a rule based, message passing machine-learning 
paradigm that incorporates planning and rule discovery 
for intelligent problem solving in a dynamic 
environment. While the system we implement resembles 

Holland's original LCS in structure, several additions 
and substitutions are included. After discussing the 
limitations the bucket brigade algorithm, the 
apportionment of credit (AOC) mechanism in Holland's 
LCS, we offer Christopher Watkins's Q-learning 
algorithm [10] as a replacement. We also examine an 
enhancement of the original LCS, the Distributed 
Learning Classifier System (DLCS) [1, 5]. The system 
we implement has the distributed capabilities of the 
DLCS, but it uses Watkins's Q-Learning mechanism for 
credit apportionment. We call this system the 
Distributed Q-learning Classifier System (DQLCS). 

Monolithic systems suffer from slow learning due to 
the large size of the state space created by complex or 
multiple goal tasks [11]. This explosion in state space 
size is called the curse of dimensionality. Task 
decomposition [11] is a solution to the problem of 
complex task learning in which the overall task is 
divided into smaller pieces. Each individual task is given 
a control module whose objective is to learn only to 
achieve that task. Then, instead of learning over a single 
state space whose size is exponential in the number of 
tasks, the modular system learns over a linear number of 
constant sized state spaces. The capability of a system to 
then learn to coordinate these multiple behaviors, or 
policies, is called dynamic policy merging [11]. Many 
questions still remain about various shaping techniques, 
the schemes for'combining reinforcement learning and 
distributed control on the same system. From our 
experiments, we comment on the effectiveness of the 
DQLCS at decomposing and solving robot learning 
problems using two distributed reinforcement techniques, 
holistic shaping and modular shaping. 

2. Developing the DQLCS 

The structure of the Learning Classifier System 
(LCS) is shown in Figure 1. Boxes represent the various 
components of the LCS, and arrows represent the flow of 
data through the system. The operation of the system is 
based on the use of lists of evolved production rules or 
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classifiers. Classifiers are condition-action pairs. Each 
classifier defines a possible state of the environment. 
Associated with each classifier is a strength value. The 
strength of a classifier is related to its current usefulness 
to the system as compared to all of the other classifiers in 
the system. The goal of the LCS is to adjust the strength 
of all of the classifiers over time until the classifiers most 
useful in achieving the desired goal are distinguishable 
from the rest. A credit assignment scheme is used to 
update the strengths of the classifiers. Credit assignment 
is recognized as the key to the success of the LCS. 

The input interface and output interface are used for 
interaction with the environment. The input interface 
receives as input sensor values and encodes them into a 
message for posting on the message board. The output 
interface decodes the action part of the winning rule and 
sends the command(s) to the machine for execution. The 
message board is a bulletin board upon which messages 
describing the current state of the system are "posted". 
The classifier list is the rule base for the LCS that 
contains all of the system's rules and their associated 
strengths. Credit assignment or apportionment of credit 
(AOC) is used to adjust the strengths of the classifiers 
based on the positive or negative effects on the state of 
the system resulting from their use. 

Input 
Interface 

Message 
Board 

Reinforcement 
Learning (Bucket 

Brigade Algorithm) 

Classifier      \ 
List 

Performance 
Criterion 

Output 
Interface 

I Rule Discovery 
* (Genetic Algorithm) 

(^Environment  ~^* 

Figure 1. The Learning Classifier System (LCS) 
structure. 

2.1. Q-Iearning vs. The BBA 
The apportionment of credit component in the LCS 

architecture as originally proposed by Holland is the 
bucket brigade algorithm (BBA). In theory, the BBA 
solves the credit assignment problem by encouraging the 
formation of rule chains. Research has shown that the 
BBA in its original form could sustain pre-existing rule 
chains, but that it is not strong enough to successfully 
encourage chaining from a rule list consisting of initially 

random strings [2, 5, 9]. The backwards propagation of 
rewards from the rules receiving the rewards to their 
supporters was observed to take many time steps. This 
slow learning process results in the need for a large 
number of initially long-running experiments before the 
first rules in the chain receive any reward. 

Because of the time requirements imposed by real 
learning robot problems, we decided that the BBA is not 
sufficient for use in our system and that some other 
apportionment of credit algorithm is necessary. In the Q- 
learning classifier system (QLCS) [1] the BBA is 
replaced by Q-learning [10]. In a Q-learning system, 
each state-action rule has an associated Q-value. The Q- 
value is an estimate of the minimum cost-to-go 
associated with taking the rule's action when the state of 
the environment matches the rule's condition. After a 
rule is executed, the environmental feedback is used to 
update the its Q-value. Ultimately, the system reaches an 
optimum policy, a path of least total cost. 

2.2     Derivation  of the Q-learning Update 
Equation 

Q-learning originated as a recursive algorithm for 
solving Markov decision problems. Markov processes 
contain a finite number of states, with each state having a 
finite number of possible actions. The probability of 
making a transition from one state to another is a 
function of the current state and not on any past history 
of the system. We call the set of n finite states in a 
Markov decision-process S= {s,}, /=1, 2, ... , n,. At each 
state, there is a set of «„ possible actions A, = {a^}, 
j=l,2,...,nas. The probability of making a transition from 
state Si to state s;- given the action a is pr{st -> sj) = pv{a). 
When an action a(t) e A, is taken from state s(t) e S at 
time step t, the new state function S(t + 1) = \i(s(t), a(t)) 
determines the resulting state. Each state-action rule has 
an associated value, c,(a), that represents the 
instantaneous cost incurred by taking action a in state s<. 
This probabilistic value is assumed to be either always 
positive or always negative and is estimated by the 
expected value: E [c, (a)] = ct (a). 

We now establish the value function VM(i), the 
expected sura of all future discounted costs where the 
system starts at state st and follows the state function )x. 

J/(/)= limE 
t=o 

(1) 

The summation includes all future states of the 
system, where s, is the state of the system at time t and y 
is the discount factor, y s [0,1]. By applying the 
discount factor, we emphasize more immediate future 
costs over distant future costs.   The inclusion of this 



discount factor and the previously mentioned restriction 
on cost function sign facilitate the convergence of the 
summation [10]. 

Bellman's principle of optimally [8] is used to find 
the optimal policy, a policy that minimizes the future 
expected cost. Bellman's equation can be stated as the 
following: 

V'{s)= mm\c,{a)+Y I A/b)v'{s\  .       (2) 

This equation says that the minimum total cost from 
the current state to the goal is the sum of the minimum of 
the expected instantaneous costs for actions from the 
current state and the minimum cost of going to the goal 
from the resulting next state. 

By reformulating (2) as a recurrence relation, the 
costs-to-go may be estimated over repeated trials. Value 
iteration, a recursive estimation equation of the form 

V^(Si)= min jcito+rl p9(flyrk(sj)\,    (3) 

has been shown to converge to the optimal value policy 
V'(s,) for a given initial estimate V°(s,) [10]. That is, if at 
the £* iteration V\s,) is estimated as f^fo), then 
^+;) (s.) -> V'(s,) ask-*cc. 

Watkins [10] reformulated Bellman's equation by 
adding Q-value notation: 

Q'(si,a) = ci(a)+rZpij(ay(sJ). (4) 

In this equation, Q*(sba) is the Q-value associated with 
taking action a from state s,. Equation (5) shows the 
simplification of Bellman's equation (2) resulting from 
the substitution of Watkins's Q-value notation: 

V'(s.)= vainO'{slta). (5) 

Applying the value iteration technique to this 
simplified form of Bellman's equation gives us the 
following results: 

Vk(s,)=> min Ok(sita) (6) 
azAU) 

and 

(7) F%.)=rrunö*+,M. 
aeA\t) 

Now the recurrence relation (3) becomes 

minÖ(*+1)M<- 
asAm 

min]c,(a)+/ £ PiM) min Qk[s.,a)\.       (8) 
asAU){ sjSS a^(j)        W     ') 

Since this is known to converge to an optimal solution, 
we can rewrite (8) as 

Q{k^)(s,,a)^cl{a)+rYJ Pub) mm Ok(s:,a) (9) 
aeA0)~ K ' 

The recurrence relation of (9) provides an estimate 
for the Q-value of the state-action pair 0„ a) in terms of 
an expected instantaneous cost and a weighted sum of 
minimum costs-to-go for the state action pairs (sj, a). We 
then approximate the unknown values cj (a) and pv(a) 
as: 

c-,(a)*c,(a), (10) 
and 

HPiJ(ü)V(sJ)«V(sJ). (11) 
Sj<=S 

In (10) and (11), the estimate of the expected 
instantaneous penalty is the single sample value of the 
incurred instantaneous penalty, and the expected 
minimum cost-to-go is estimated as the minimum of the 
estimated costs-to-go at the next state. 

We can write the estimate of Q(st,a) at the (&+/)" 
iteration by substituting (10) and (11) into (9): 

Q^x\si,a) = ci(a)+yVk(sj). (12) 

Let Q£s>a,) be the current estimated minimum cost 
for executing action a in state s at time t. After taking 
this action, we update our estimate of Q£sba) using (12). 
The old and new estimates are combined in the relaxed 
Q-leaming update equation: 

Qt+i fa. at) *- f1 - a\st. <>t )\Qt \st > at) 

+a(st,at)[cSi(at)+yVt(st+l)] (13). 

In (13), afs„ a,) is a learning rate between 0 and 1. 
The learning rate thus provides a means to weight the 
combination of the Q-value's past estimation and the new 
measurement. 

2.3. The QLCS Execution Cycle 
After replacing the BBA with Q-leaming and rule 

strengths with Q-values, the QLCS execution cycle is as 
follows. 

From an initialized set of Q-values, QQ. 
1. Observe the current state s of the system. 
2. Compile a list of all eligible classifiers E(s, t) 
3. Select  a  winning  classifier   using  a   stochastic 

selection method. 
4. Pass the action part a of the winning classifier to the 

output interface to be executed. 
5. Advance the system clock: r = t + 1. 
6. Receive an immediate cost c(s,d) for executing 

action a in state s at time t. 
7. Examine the new message board. 
8. Compute the new eligibility set E(t) given the new 

environment state. 



9. Rank all of the classifiers in E(t) based on their Q- 
values. 

10. Update the Q-value of the classifier chosen during 
the previous clock tick using the Q-learning update 
equation (13). 

11. Make a probabilistic selection of the classifier with 
the maximum (or minimum) Q-value. 

12. Goto 4. 

In many problems the state space representation of 
the environment is too large for a monolithic learning 
system to explore in a feasible time period. A distributed 
architecture more suited to this type of problem was 
introduced by Dorigo [4]. His architecture allows for the 
distribution of internal LCSs for the study of learning 
problems involving real robots. The Division of Labor 
(DOL) architecture is proposed by Bay and Stanhope [1]. 
In the DOL learning system, separate modules focus on 
solving independent parts of a learning problem. This 
property closely matches the idea of task decomposition. 

The DOL architecture contains a layer of thinker 
LCSs, each focusing on learning a specitic behavior. 
Above this layer resides a combiner LCS. The job of the 
combiner is to coordinate the decisions of the thinkers 
and to choose the ultimate output action. This 
architecture also includes a mediator for distributing 
input sensor data and reward to the thinker LCSs. The 
decomposition of the input messages is the most 
important property of the DOL architecture. It greatly 
reduces the size of the state space search that must be 
completed in a learning application. 

Besides the standard AOC problem, distributed 
systems have the problem of shaping, the decomposition 
and distribution of reward to each LCS in the system. 
Holistic shaping treats the entire learning system as a 
black box. The same reinforcement is blindly given to all 
of its LCSs. This reward scheme introduces some 
ambiguity problems to the system, however. Thinker 
LCSs may be rewarded for bad decisions or may go 
unrewarded for correct decisions. In modular shaping, 
the thinker LCSs are first trained independently. After 
they have obtained a suitable level of performance, their 
learning is "turned off', turning them into reactive 
systems. The combiner learns to coordinate the action 
messages of the thinker reactive systems to achieve the 
complex goal in a separate learning exercise. 

3. Experimental Results 

We observed the performance of various 
configurations of the QLCS and DQLCS when applied to 
typical real robot learning problems. The small mobile 
robot was equipped ultrasonic range finders and infrared 
sensors that detected modulated light from specially- 

constructed    '"beacon"     emitters. The    problem 
environment selected for the learning system is shown in 
Figure 2. The problem is common in robotics: find the 
best path through an environment to a goal position. 

beacon" m «    goal 
.'  radius 

\       /// 

7. 
\ //; 

Figure 2. The goal seeking problem environment. 

We used three infrared goal beacon detectors and a 
middle ultrasonic sensor as input sensors. For these 
sensors, the "docked", or goal, position was then defined 
as any position where the robot was "seeing" the goal 
beacon with at least the middle goal detector, and the 
range from the ultrasonic sensor was one unit of 
measure. Table 1 provides a breakdown of sensors and 
their associated penalty values used for instantaneous 
cost calculations in these experiments. 

Sensor Associated Penalty 
Middle ultrasonic 10*(3-bit range 

value) 
Left Goal #2 0.25*50=12.5 
Middle Goal #2 50 
Right Goal #2 0.25*50= 12.5 
Table 1. QLCS penalty values for experiments 

An upper limit of 50 time steps was used for each 
experiment Regardless of the position of the robot, the 
system terminated the trial after the 50th clock cycle. 

3.1 The Monolithic Approach 
The docking problem was first studied using a 

monolithic Q-leaming classifier system. The system 
used 6 bits of input: 1 bit from each of three goal beacon 
detectors and 3 bits from the ranging sensor. The output 
action string for each classifier was four bits: 2-bits for 
rotation and 2-bits for translation. The state space of the 
problem was then covered by 210 or 1024 classifiers. The 
initial state of the environment is shown in Figure 2. 
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Figure 3. Learning curve for monolithic QLCS. 

Figure 3 shows the monolithic QLCS's performance. 
This system was observed for 100 trials. For most of the 
experiment, it is difficult to find any system 
improvement. Within the final 15 trials, however, the 
system appears to be settling to some standard 
performance. It also "timed out" less as the experiment 
progressed. 

3.2 The Distributed Approach 
Next, we studied the same problem with the 

distributed architecture. Inside the DOL framework, we 
observed the performances of holistic and modular 
shaping. Table 2 shows the DQLCS configuration. 

QLCS Input bits/Source Output Clfs 
Thinker #1 3/range 2-bit 32 
Thinker #2 3/beacon detectors 2-bit 32 
Combiner 2/output from Thinker 1 

2/output from Thinker 2 
4-bit 256 

Table 2. DQLCS classifier configuration. 

3,2.1 Holistic Shaping 
Figure 4 shows the learning curve for the holistic 

system. There was only marginal improvement shown by 
this system. The system "timed out" during most of the 
first 20 trials. When the goal was reached, more than 25 
time steps were always necessary. As the experiment 
progressed, the robot was able to find the goal more often 
and more quickly, but even then performance was only 
marginal. 

30 40 50 
Trial number 

70        80 

Figure 4. Learning curve for holistic shaping DQLCS. 

3.2.2 Modular Shaping 
For use with a modular shaping DQLCS, we divided 

the "goal-seeking" behavior into the sub-tasks of 
"approach goal" and "locate goal. The "approach goal" 
behavior involved translation only, while the "locate 
goal" behavior rotation only used rotation actions. 

For the "approach goal" behavior, the QLCS used 3- 
bit range data- as input. Four possible translation 
commands were selected by the 2-bit output action 
strings. The cost function returned a constant multiple of 
the range to the goal. The learning curve for the system 
is shown in Figure 5. 

5 10 15 20 25 
Trial number 

Figure 5. Learning curve for "approach goal" behavior. 

The objective of the "locate goal" behavior was for 
the robot to learn to use rotation commands orient itself 
towards the goal beacon. The QLCS used a 3-bit input 
(one bit from each of the three goal detectors) and 
generated a 2-bit action string that was used to select 
from among four rotation commands. The goal detector 
penalties from Table 1 were used. To insure that the 
system learned the behavior completely, three different 
initial environments were used. For Trials 1-30, the 
starting position had the robot's left goal detector seeing 
the beacon. In Trials 31-50, the right beacon detector 
initially saw the beacon.   In the remaining trials, the 



robot was placed such that the beacon was directly 
behind it. 

The results of the experiment are shown in Figure 6. 
This learning curve is actually a combination of three 
separate learning curves, one for each new starting 
position. In each of the three starting positions, we see 
that the system quickly learns the appropriate course of 
action to quickly reach the goal state. 

Time steps 
to goal 

10 20 30 40 50 60 70 
Trial number 

Figure 6. Learning curve for rotation behavior. 

After the "locate goal" and "approach goal" 
behaviors were learned, the QLCSs' learning was "turned 
off'. Using the two QLCSs as thinkers, an untrained 
combiner was given the "seek goal" task using modular 
shaping. Figure 7 shows the learning curve for the 
modular shaping DOL system. The improvement of the 
system from the first trial to the last is easily visible. As 
is shown in Figure 7, the system learned a path that 
required approximately 11 time steps after only 30 trials. 

15 20 
Trial number 

Figure 7. Learning Curve for modular shaping DQLCS. 

4. Discussion of Results 

From a comparison of the performances of the three 
classifier systems, we can see that the DQLCS with 
modular shaping was best suited for this problem. It 
appears that the size of the knowledge base in the 
monolithic system was its downfall. There simply were 
not enough visits to each state for the incremental 
learning algorithm to be successful. The ambiguous 
nature of the holistic shaping distributed system is its 

major problem. It appears that reinforcement is assigned 
to the thinker classifiers in a manner that is much too 
haphazard. The learning process is slow; therefore, 
overcoming misguided reinforcement often takes too long 
to be practical in real robot applications. 

The performances of the QLCSs show that Q- 
learning is an acceptable alternative to the BBA as the 
apportionment of credit component of the LCS. The 
results from the DQLCS experiments indicate that the 
distributed architecture using modular shaping is more 
time efficient at solving tasks that require the learning of 
complex behaviors than either a monolithic architecture 
or a distributed architecture using holistic shaping. While 
the DQLCS with modular shaping far outperformed the 
DQLCS with holistic shaping, it also required the 
infusion of much more domain specific knowledge. This 
requirement limits its application to a considerably 
smaller class of problems than may be attempted by the 
DQLCS with holistic shaping. 
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sumulusyLoniLrs overl.^^        , TT " *' PUrdy reacdve 0r bchavioraI aPProacfa> w^ch espouses 
inteUiiwS^uSrwS™        IC "J"""*   At ^ 0ther exnaae « Planni*S contwllen; including hierarchical 
-■^l^A^l.^^ '— ^ "—" «"^ "*» *" «** • ^ ^   Bach 

to atotoS2^ requirements, temporal data processing, and deliberative computations. It also makes them quick 

Snti oLcsgz"rto ™rcSonJ: rrr ** ^^is what «^ a^* ^~ ££ 
techruqueT ft tadfflfcS forlhemT^ """f^ "1 ^ "° ^ t0 ^ ^^ of «« *e *mP'«* **** 
whether an' JLfriZTi ! **?"* Soal^nemed **<»* » complicated environments.  Furthermore it is unclear 
M££^ — ■"-*• "* — *ca- the,aeons are'mTuS 
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Planning systems can better choose behaviors geared toward long-term rewards. They have long-term memory that can be used 
to represent their environment. They can process alternatives with symbolic manipulation and arrive at correct decisions that 
may be impossible with fixed rules and local senses. They can anticipate their consequences, evaluate their progress, and plan 
future actions. However their goal-motivation may make them situation-insensitive. Sensor input may be devalued in favor of 
their world models, and they therefore may be slow in adapting to a changing environment. Their world model itself may be 
taxing to acquire, maintain, and reconcile with contingencies. 

ies:   a 

SPtEVal. 2591/89 

A reasonable compromise for a practical control system is some sort of adaptive combination of the two approache.. 
controller that follows stimulus/response rules at low levels of competence, such as in an execution laver, but which still allows 
the potential for planning, learning, and prediction.  The reactive behaviors should be learned and evaluated on-line.   Such a 
capability is potentially embodied in the learning classifier system (LCS) [3, 6]. 

.An LCS is a computing machine that uses the architecture of a rule-based system, but also allows for memory and learning. It 
allows a user to parametrically tune it to weight its reactive vs. planning characteristics, thereby making it more or less goal- 
onented or situation-oriented. Furthermore, the LCS functions as a modular, message-passing controller, so that data 
transmission is encapsulated in low bandwidth signals that simplify communications. In an intelligent agent, this characteristic 
allows us to construct behavioral modules that pass discrete messages with consistent formats. In this way, the LCS functions 
much like an object-oriented program (OOP), and indeed, OOPs are a favored simulation tool for their study. This feature also 
makes the LCS potentially extensible into multiple-agent domains. 

In this paper, we will review the structure and operation of the learning classifier system and apply it to the learning control of a 
simple mobile robot performing as an animat. This controller will have to learn to interpret sensor data, drive the robot 
purposefully toward a goal, and avoid obstacles en route. We show that the learning properties of the classifier system enable us 
to build fast, sparse stimulus/response rule bases with default hierarchies. We also propose a distributed architecture for 
populations of such robots in message-passing environments. Simulation studies show that the LCS can provide adaptive 
controllers that are in some ways simpler than even deterministic Boolean functions. 

1.2 Past Work 

The need for learning techniques for the generation of reactive behaviors has been widely recognized recently. Among these, 
Kube [3,9], used an adaptive logic network to learn the structure of a combinational logic circuit that controls the movement of 
multiple mobile robots. Ram [11] and Sims [14] both used genetic algorithms to learn reactive behaviors, with [14] taking the 
additional step of combining the structure of the robot into the evolutionary process along with the controller. An advantage of 
using the genetic algorithm is that the system remains continually adaptive and can adjust through incremental changes in 
structure and function. It also allows the designer to impose arbitrary expert rules on the system as constraints or defaults, and 
to preserve them under evolutionary operators through elitism [10]. 

Learning classifiers themselves have been used to control the behavior of animats, most directly by Wilson [16], and Dorigo [4]. 
Wilson proposes the environmental reward technique that we adapt for this paper, but shows experiments for the learning of a 
logic function only (the multiplexer problem). Dorigo uses the classifier system to track a moving target, and shows some 
behaviors consistent -with predictive abilities in the learned behavior. 

Our approach is closest to that of Husbands [7] and Wilson [16], as we apply the LCS to an animat model in a static 
environment. Our main contribution here is to show evidence that in such a situation, reactive learning is effective without 
planning abilities, and that a fast learning algorithm can economize on even deterministic logic. We also demonstrate that the 
transient-message-passing nature of the LCS extends directly to multiple agents, so that the same control architecture might be -. 
used in arbitrarily sized populations. I 

1.3 Review Of Learning Classifier Systems | 

The learning classifier system was developed by Holland and bis associates after the effectiveness of the genetic algorithm had ' | 
been established [3, 6]. The LCS combines genetic operators and apportionment of credit schemes together with an architecture :) 

i 
♦ 
i 



^,i!SzStoSäp,,ysic,l de™ss *"* * robots eqmpped wth sensors:acnntors- ^ pr°—Gi- 
The overall arrangement of the LCS is shown in Figure!.  It consists of a set C = {C,}, , = l „ of classifiers each with A 
(* ä 1) conjunctive condition words c, and a single action word a.   At an iteration time r, each classifier C,  is therefor- 

represented by a (A - 1) -tuple of words, C,(r) = (c:I(r) c*(r),a:(r)).   Each of these words is a string of length / with 
elements taken from the set {0,1, #}. 

Separate from this is the message board, which at all times consists of at most m messages; M(t) = {mx{t), ...,mm(t)} Each 
message is a single word of the same length, /, and consists of elements from the sst {0,1}. 

A data path exists from the action words of the classifier list to the message board. Execution in its simplest form proceeds as 
each classifier compares its conditions to the message board. A condition c„ is said to match a message mp, denoted 

<V (0 * "P (0, if each 0 and 1 in c,f has an equal bit in the same position in mp, and the ^-symbols act as don't cares. An 

eligibility index set E is created that contains a list of the classifiers C, for which all conditions are matched by at least one 
message mAf; i.e., £(r) = {/:^(r) » mp(t) for ally = 1,...,* and any/»}. 

strengths 

message 

board 

supplier 
list 

A 

input 
interface 

conditions 

/ 

actions 

fT~L 
apportionment 

of credit / 

reinforcement 

ruie 
discovery 

output 
interface 

environment 

Figure 1: The architecture of the learning classifier system. 

In ««Vurction with each rule is a strength value that signifies the overall merit of the rule over its lifetime.  The use of the 

SSL,.?? VaneS.Wth ?C imPlementadon of *« apportionment of credit and reinforcement components, but it can always 
oe interpreted as a relative figure of merit. 

Also necessary is a supplier list L(t) = (Ll(0....,Lm(t)) of length m, which contains integers denoting the identity of the 

ciassuter that posted the corresponding message at the previous time step r. for each /-I....,«, L (t) = i, where 

mj (r) = a, (r - i). These are known as the suppliers of those messages. This list will later allow a classifier to know which of 

its counterparts posted a message that now matches one or more of its conditions. In the case that message; was posted by the 
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ZZ^lT™- " ^ S>mb°1 (SUCh U 0) ^ * emered in L that convevs «his information.  This will enable us to create 
the sets of supporters that will be important for our apportionment of credit scheme. 

the -«^ boar.  Known as roulerte-wheel selecfion, ciasstfers ar^e^trn^'^t ^^KS 

with ma*»,* ) classifiers chosen according to a bid value associated with each classifier. Classifier ft bid, Ä«   is a figure 

«SS^Sr1^ ."T1 faT' inClUdinS itS ^"^   In °rder t0 *«"«* a new "«age board at'time ,*the roulette-wheel algorithm simply chooses elements of £(/) where the probability of being selected is 

Z*/W (I) 

or, using the Boltzmann distribution, 

P(0 = 

JeE(t) 

eTB,(t) 

ZtZ^ "tempCratUre" Pafan,eter T ^ « to control the likelihood of allowing low-bidding rules to post   This selection 
mechanism is sometimes reterred to as the conflict resolution component of the classifier system. 

The message board at the next time iteration consists of all sensor messages and the action parts of all classifiers so chosen   We 
will call this set of winning classifiers C . 

l^STZZ^ ^ V0Stf ^ *f *"**"* themSdVeS' °r ±Sy my * derived from a sensor int«^=-  Such an interface 
wnee     2r >hT        ^   f,aprPriate bltS in a meSSagC- ^ messaSes generally are not subject to the rodeS 
wheel compeuuonwith the actions of the classifiers, because sensor data may be necessarily accessible at any time   In oracüce 
the number of sensors will dictate the minimum allowable length / for the messages'. P ' 

A counterpart to the sensor interface is the effector interface. This interface recognizes postings that have a true output tat 
(p e-speofied bit position(s)), and routes them instead to a set of actuators. OptionSy, the outputs rnay ^ o bo^ the SLor 
interface and the message board, in order that classifiers may see the current state of the actuators. 

1.3 Apportionment of Credit and Reinforcement 

s^LPd°^r;int 0f^ bI°^k ~? diagiain ^ take a number of forms- A» origkaUy Pr°P°** bv Holland, this was the 
h.Tin ? I h

S ^"^ (BBA)- ^ BBA iS a mecha^ by which a classifier selected to post an action ™ for 
this privilege by sharing its strength with those classifiers that previously posted messages that now enabtertTe   its 

aTT^Ä fr°m *? "5 °f r^ P°B8d al0nS ^ *' aboard.   (Tuf disScuoa berw^n    supponS 

o^fci^  rf H °rt^ The snpport is L sum of the strengths 
De^s SHE ATT   

TtoJ?a7M "*■<«« *«■«« by other rules that anTthemselves relatively stxo^ ' 
Details of the BBA algorithm may be found in [2, 3, 6, and 13]. In principle, the BBA emulates a consumer/supplier economy 

TfcS Sail mL2^,gnati0n *? WC 'T reCal,,y ad0pted iS t0 concatenate «* *»or input string with an internally posted message. 
stuSivST ,    T"" f0nnat (Part SenSOr/ Pa" mtemal meSSa?e) and «^ ** « «*"*» «*» ^ *™*> be taJc^ simultaneously with an internal message posting. 

SPIE Vol. 2591/91 



that encourages backward-chained sequences of rules, thus accomplishes »oai-onem^n.«   -r       ■ t 
pnmanlv responsible for encounginTsituaüon^nentedness. § ^^^^^ T™ enforcement component ,s 

1.4 Discovery Component 

2. THE LCS AND THE ANEVtAT PROBLEM 

^ is™ ZZ IZT* by WilSOn f161' referS ,0 " aUt0n°m0US m0bi,e aSent ttai lives in an unstructured environment   Its 

^:s:s !ss forgSitvtroebiavoidins obstades en route- ^ ^ima§incd -a m=^ ^   uecuvwy serves as a model for arbitrary problems in state spaces, and in particular, Markov decision processes. 

ynenTtiLTv"' ™ "T" ^ "^ fr0m * ^^^ *«"* mobile robot model.  Figure 2 shows the model and the 

S^S. L^S^;:ron of *■vehicle rather *- **cdl-^mode> ^oSlS 2 
dviamics^tie robot   ThiÄ^T "*    fCqUireS D° tessdlation of ** «ate space and mav preserve the real 

know.edgeTanv inTrtS tfeSTe fr^e T h T ^,deteCUOn ^ obstade d««*°°-  " is assumed that the robot has no 
described by ^t of^uoos '* mCaSUrCmentS « relative * «**   The motion of the robot is 

Vrobot =-(ynSht +?Uft) 2 

and^ne "T1*! th3t ^ " " thS dircCti°n 9 • EqU3ti0nS P) ""* * «**«* -PPro-mated to give estimated position. and orientations 8 : 

Probet (0 s /W, (r -1) + i (Kn?Ar (r - 1) + (^ (/ -1)) 

With this model for the robot, we will seek a rule-based controller that reads the sensor sienals and nnduces nmw, ,„„/„m 

motor will cause .t to turn nght or that tunung on both motors will cause it to go forward. This knowledge will have to 
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11 
ue learned. Furthermore, the robot will have to leam to navigate in its world of goal and obstacles. Feedback to enable both of 
these learning behaviors will come from the sensors. However, while the classifier system's inout interface will teil the 
controller only binary information (object/no object) from the detection region, the environmental reward component will have 
analog data on the distance to the goal and from the nearest obstacle (provided they are within the detection region). Thus the 
reward can be based on proximity values. The rules fire in response to object detectors, while the reward utilizes object range 
se,Jfors. Note that our sparse, low-resolution sensor data will result in perceptual aliasing [15], so that the robot will have 
difficulty distinguishing different world-states. This is intentional and, we believe, realistic. 

Sensing Regions: 

Isft Baal senior right goat lantor 

Vj^      ^     robot 

right 

lart on«t»cle ien«or        right obnscla »mor 

Figure 2: Sensor and kinematic models for the animat-robot. Modeled after ultrasonic and infrared sensors, respectively the 
goal sensors have a much larger range than the obstacle detectors, and both sensor ranges overlap dead-ahead (so that the robot 
is not doomed to a life of tacking back and forth as it travels.) 

2.2 Application of the Deterministic Classifier System 

As a preliminary baseline experiment, we first show how this problem can be solved with a fixed rule base that implements 
3oolean logic. This will give a deterministic classifier system that uses no bucket brigade. This hand-coded classifier system 
can be represented by the equations: 

left_ wheel = s0 + ^ J3 + Ijj, 

right_ wheel = AJ3 + jjJ2 + J0J3 + J0jj 

where sQ , s{, s2, and s3 denote, respectively, the right and left goal sensors, and the right and left obstacle sensors. 

To implement these functions in the deterministic classifier, we will use / = Ö, Jfc = 1, m = 1, with the only message on the 

message board being reserved for the sensors, and all postings going directly to the output The format for the condition/action 
;uings are shown in Figure 3: 

(5) 

5 

ft 
3 

$ 

condition/action strings 

X X S3 S2 S1/RW SO/LW 

msg. from sensors 
msg. to actuators 
reserved tags 

a 
01 
i> 

1 
1 "tag" bits: 

i gure 3: Word formats for the condition string and action string. Unused bit positions may be reserved for use in future tags, 
jch as might indicate whether a message was posted by a classifier or a sensor. 
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Ä£S ™em show^ *• **"of"" !olhm°' ^cto^ •" ™=' ■»»** »p— ^ 

conditions 
actions 

(rightmost two bits posted 
to actuators (on/off)) 

0    1 0 0 * *   I 0 0     1 # #    I #    I 1 
ü 1 0 0 1 # I # 0      1 # # #    I 1 
0 0 # 0 1  I # 0 

0 
# # 1 

0 0 # 1 #      0 # # # 1 
0 0 # # #   1 0 # 1 # 
0 0 1 0   |*     # 0 TT # 1 # 
0 0 # 0    |0    |# 0 #    | # 1 # 

500 

-500 
500 

dlSLrcLmer^ntt,1-? ^°!" buck« >^>-   The first (a) is the »baseline- run executed with the 
^£Z££^?^!^ fiSUre- *< h0riZ°ntal "" « *~««. - *° ««* — - from the 
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3. USING THE LEARNING CLASSIFIER 

Given the performance of the deterministic classifier as seen in Figure 4a, one would expect that a learning classifier might 
arrive at a similar set of rules after experimentation. Although the deterministic control rules generated (5) were not a unique 
choice, we con follow the lead of past literature and consider them a "correct" set by which to measure the learned classifiers 
[13, 16]. The goal of this experiment is to learn to choose a suitable set of learning parameters, including the genetic operator 
probabilities and the environmental reward/penalty functions, and then analyze the rules that result. We might guess, 
incorrectly , that when the classifier system has learned to guide the animat to the goal, that we might "read" the classifiers in 
the list, translated by the word format of Figure 3, and derive Boolean logic similar to equations (5). A similar end result was 
produced with an "adaptive logic network" in [8, 9]. 

Because we are temporarily investigating the learning of a combinational logic function, we eliminate any sequential processing 
by turning off the bucket brigade. We will again use / = 6, k = 1, m = 1, and n = 32 . We will initialize these 32 classifiers 

with random arrangements from {0,1, #} (except for the fixed "tag" columns which remain invariant even under genetic 
operations). We use a (dimensionless) step size of t = 15 and a robot radius of r = 1. 

When any classifier posts an action to the output interface (which happens in this case at every iteration, since there are no 
posts to the message board), a payoff value v is computed according to: 

v = J ^oaiiVgoal - V + W^Qf^t, - 1) - W„a,n /„„„ 

where Wgoal, Wa„glt, and Wcrash are, respectively, chosen reward amounts for moving closer to the goal, pointing more directly 

at the goal, and crashing into an obstacle.  Flags fgooh fangle, zndferash are set to 1 if these three conditions are detected; 0 

otherwise. The first two terms of the function above reflects a reward of W if a good condition is achieved, and a penalty of 
0.5 W if the result is bad. Crashing is always penalized. 

Whenever an action is taken, a set A is created using the posting classifier(s) C as follows: 

A = Er\{i:a.: »av foranyCw eQ 

Then we use the reward distribution function to adjust the strength 51,- of each classifier 

S,(0 = 

where iVpen is a penalty factor that is (optionally) used to penalize classifiers that are in £, (their conditions match the sensors), 

but whose actions are not the same as the winners' actions.   In the experiments given here, we use JF^ = 0, with the 

reasoning being that we prefer to encourage the emergence of diverse classifiers relevant to any input, rather than force 
classifiers to agree on an output in response to a particular input 

For the discovery component, we apply mutation and crossover every 50 iterations, so that the reward component has sufficient 
time to separate good rules from bad ones between genetic operations. To perform discovery, we select one parent Q based on 

S,(r-l)+4- 
A if/ sA 

S,(r-l).(l-f^) Hi eA 

^ i r.e classifier is "sub-symbolic,* meaning that it learns rules that are unconstrained by any syntax that the user is prepared to translate into 
Zngiish. One may look at an operational LCS and not be able to decipher its rules. 

SPIE Vol. 2591 I 95 



roulette-wheel selection considering the strengths of the classifiers. We then, with probability v , select a second parent C, 

again using the roulette wheel. If a second parent is chosen, a crossover is performed between Q and C\ at a random bit 

position. If no second parent is selected, the first parent is merely replicated. The offspring Cnew is then provided an initial 

strength by sharing the strengths equally with its one or two parents. It is used to replace a weak classifier bv roulette-wheel 
selection based on a fitness vector max(Sy (/)) - S, (t).  This prevents the strongest classifiers from being killed to make room 

for a mere mutation. 

Mutation is then performed, bit-wise, on the enure set C, with probability n . This mutation is three-way, such that a 0 might 
remain 0 (with probability I - u), or with probability u , become a 1 or # (50% chance of each). 

4. SIMULATION RESULTS 

Shown in Figures 4(b-d) are three trial runs of the learning classifier system controlling the animat to reach the goal These 
are typical trial runs and show behavior similar to the handled version (Figure 4(a)). In (b-d), all rules are initialized at 
random. 

5. EXPERIMENTAL RESULTS 

To test real-time performance and the effects of sensor and actuator errors, a learning classifier svstem was programmed to 
control Curly, a modified RWI B12 robot [12]. Curly is outfitted with a Motorola 68HC11 based microcontroller with 32K of 
external RAM for programming. It has a different set of sensors than the simulated model: First, it has three diffuse-reflective 
obstacle detectors with ranges of approx. 10cm, mounted at dead-center and approx. 30° to either side. It also has a lon*-range 
intrared detector that detects only modulated infrared from a special source. This source "beacon" represents the goal and emits 
IE. at 40 KHz modulated by 160 Hz. Last, it has an ultrasonic range finder mounted so that it points in the same direction as 
the beacon detector. This sensor is used by the reinforcement component to determine progress toward the goal, but its range 
readings are not available to the LCS. thereby making the sensing resolution of Curly roughly equivalent to the simulated 
model. Figure 5 shows Curiy's sensor apparatus. 

IR obstacle 
detectors ("10cm) 

B12 
robot ultrasonic range 

sensor ("10m) 

Figure 5. Curly, the modified B12, with sensor ranges. 

The LCS is surprisingly simple to program on a real robot, and can be done with few lines of assembly or C code. Most of the 
extensive programming necessary for the simulation runs was in simulating the robot itself and its environment, as well as a 
user interface [5]. The actual mechanism of the classifier system (Figure 1) is quite efficient, with the genetic algorithm being 
probably the most time^onsuming. We note that Curly is not a treaded vehicle, as is the simulated model, but is instead 
synchro-drive. The natural outputs are therefore not right_wheel and left_wheel, but translate and rotate. The 
controller, although it now writes to these two actuator behaviors, is unaltered. Sensorimotor behaviors are learned entirely 
from uninterpretted data, so the new kinematics are learned automatically. 
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With an LCS programmed on Gurly, Figure 6 shows a representative search trial. Tabulated data over manv trial runs is not 
presented here because the variance of the results (number of steps to reach the goal) is very high, and few trends, as yet, are 
apparent. Experiments are now underway to repeat the trials with an operational BBA and with Q-learrung in the hopes that a 
learning curve will be more readily apparent. 

a 

ngure 6.  Trial run for a mobile robot in an unknown, unstructured environment, 
with rectangular and ellipsoidal obstacles. 

The environment is a cluttered laboratory 

6. THE DISTRIBUTED LEARNING CLASSIFIER SYSTEM 

A popular extension to reactive mobile robot controllers is the concept of a distributed network of mobile robots. With this in 
mind, we propose the distributed learning classifier system (DLCS). The DLCS is designed with the primary constraints that i) 
communications should be kept to an absolute minimum in order to avoid exacerbating a combinatorial explosion in overhead 
and routing requirements, and //) Communications should be limited to sporadic, self-contained messages of fixed format that 
.•nay be addressed to any individual or simply broadcast to the population as a whole. It is widely noted that simple broadcast 
communications can be very useful in multi-robot coordination [1]. 

The architecture we propose is depicted in Figure 7 below. In the architecture, two extra connections are added to the separate 
learning classifier systems. First, a transmit queue is offered as a third option for output messages. That is, actions may be 
posted to the internal message board, to the output interface, or to the transmit queue, which places it on the communications 
meaium. Second, a receive queue is added to the message board so that it can take data from the input interface or classifier 
list, as before, or from the communications bus. 

11 the assumed communications medium is perfect, this architecture may be viewed as a concatenation of each message board 
and each classifier list, since all postings to or from one are available to another.   The DLCS would thus act as a single, 
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distributed classifier system. In reality, though, the communications channel is a protected resource and it may not even be 
desirable for all classifiers to be so tightly coupled. An alternative would therefore be a rationing of the communications 
channel such that each classifier performs its duties as an individual, but selected (i.e., particularly strong) classifiers could 
share actions with others through net broadcast. A second option, which implements the "learning by watching" paradigm for 
distributed learning [15] would be to allow enure rules (condition and action) to be shared, based on their relative streneths. 

Communications Bus 

Agent   1 Agent  2 Agent   3 

Figure 7.  Architecture of the DLCS. Agents may selectively post to and read from the communications channel, implemented 
as a distributed message board. 

Such a DLCS is currently under study and is being adapted to a number of distributed optimization problems as well. 
Simulations with multiple mobile robots are presented in [5]. 

7. CONCLUSIONS 

Although it is clear that the LCS forms an appropriate architecture for the execution of reactive rules in mobile robots, real- 
world experiments are inconclusive as to its learning powers. Although the simulated behavior was quite successful, 
experiments with real robots shows a very weak learning curve. We note, however, that persistent learning is due, in part, to a 
successful apportionment of credit component, which we have not used in this study. Pan of the reason for this was our 
observation, under simulated scenarios, that the BBA successfully maintains a sequence of classifiers whose actions are 
appropriately rewarded, but it is not very good at working in conjunction with the discovery component to generare viable 
sequences. There are some indications that evolution of teams of rules and specialized evolutionary operators may be more 
useful in this regard [2, 13]. 

Instead, an analysis of the strengths vs. time for individual rules (not shown here) indicates that rules live a relatively short life 
under the evolutionary operators. Our robot lives in a sensory-sparse environment and uses a fast rate of learning (high 
mutation probabilities of 0.1 - 0.3) to generate strong rules that "live for the moment." At any given time, only two or three 
rules, on average, have significant strengths, after which, their usefulness wanes, they die and are quickly replaced. We 
therefore observe that we may use considerably fewer than the number of deterministic hand-coded Boolean rules (seven) 
needed in our example, as long as we trade them when they become irrelevant The robots with this controller are extremely 
situation-oriented 

Future work is concentrating on the DLCS, as this is an entirely unexplored area for multiple agent coordination. The 
inherently message-oriented nature of the system translates directly to existing communications protocols, and promises speed- 
up through parallelism for computational optimization tasks in general. 
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